Neng Astri Lidiawati , Muhammad Fadlan Raihan , Angga Hermawan , Octia Floweri , Robeth Viktoria Manurung , Muhammad Iqbal , Ahmad Nuruddin , Nugraha , Brian Yuliarto , Ni Luh Wulan Septiani
{"title":"Effect of nickel incorporation on the physicochemical properties and performance of HKUST-1-based MOF immunosensor for DENV-3 NS1 detection","authors":"Neng Astri Lidiawati , Muhammad Fadlan Raihan , Angga Hermawan , Octia Floweri , Robeth Viktoria Manurung , Muhammad Iqbal , Ahmad Nuruddin , Nugraha , Brian Yuliarto , Ni Luh Wulan Septiani","doi":"10.1016/j.sintl.2025.100331","DOIUrl":null,"url":null,"abstract":"<div><div>An electrochemical immunosensor was developed using a modified metal-organic framework (MOF) for detecting dengue virus serotype 3 (DENV-3) NS1. CuNi-MOF frameworks with varying Cu:Ni molar ratios—1:0 (CuNi-1), 5:1 (CuNi-2), 3:1 (CuNi-3), and 1:1 (CuNi-4)—were synthesized, incorporating 10 wt% triethanolamine (TEOA) as a modulator to enhance performance. X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectra confirm the successful formation of CuNi-MOF. Morphological evolution was observed as the Ni content increased to 50 % (CuNi-4), resulting in a transformation from octahedral to bar-like particles. Among the synthesized materials, CuNi-4 exhibited the highest redox current, making it the optimal choice for electrochemical measurements targeting dengue virus (DENV) detection. Using DPV technique, it was found that linear range of DENV-3 antigen concentration is 0.001 ng mL<sup>−1</sup> - 5 ng mL<sup>−1</sup> with a limit of detection (LoD) of 0.1 pg mL<sup>−1</sup>. In addition, the CuNi-4 exhibited remarkable selectivity for DENV-3 over the other three dengue virus serotypes. Real sample testing using DENV-3 antigen with variation concentration of 0.001; 0.01; 0.1; 1; and 10 ng mL<sup>−</sup><sup>1</sup> in commercial human serum resulted in the recovery of 98 %, 94 %, 97 %, 95 %, and 98 %, respectively. The findings highlight the promise of the CuNi-4-based electrochemical immunosensor for detecting NS-1 antigens of DENV-3 with high specificity and sensitivity.</div></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":"6 ","pages":"Article 100331"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666351125000063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An electrochemical immunosensor was developed using a modified metal-organic framework (MOF) for detecting dengue virus serotype 3 (DENV-3) NS1. CuNi-MOF frameworks with varying Cu:Ni molar ratios—1:0 (CuNi-1), 5:1 (CuNi-2), 3:1 (CuNi-3), and 1:1 (CuNi-4)—were synthesized, incorporating 10 wt% triethanolamine (TEOA) as a modulator to enhance performance. X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectra confirm the successful formation of CuNi-MOF. Morphological evolution was observed as the Ni content increased to 50 % (CuNi-4), resulting in a transformation from octahedral to bar-like particles. Among the synthesized materials, CuNi-4 exhibited the highest redox current, making it the optimal choice for electrochemical measurements targeting dengue virus (DENV) detection. Using DPV technique, it was found that linear range of DENV-3 antigen concentration is 0.001 ng mL−1 - 5 ng mL−1 with a limit of detection (LoD) of 0.1 pg mL−1. In addition, the CuNi-4 exhibited remarkable selectivity for DENV-3 over the other three dengue virus serotypes. Real sample testing using DENV-3 antigen with variation concentration of 0.001; 0.01; 0.1; 1; and 10 ng mL−1 in commercial human serum resulted in the recovery of 98 %, 94 %, 97 %, 95 %, and 98 %, respectively. The findings highlight the promise of the CuNi-4-based electrochemical immunosensor for detecting NS-1 antigens of DENV-3 with high specificity and sensitivity.