Hongshen Wang , Lingli Qian , Zhiyu Wang , Yuanjie Zhou , Qian Liu , Hao Wu , Jian Shen , Juan Luo , Shengdong Hu
{"title":"A novel NMOSFET-embedded high holding voltage SCR for 5-V applications","authors":"Hongshen Wang , Lingli Qian , Zhiyu Wang , Yuanjie Zhou , Qian Liu , Hao Wu , Jian Shen , Juan Luo , Shengdong Hu","doi":"10.1016/j.mejo.2025.106625","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel NMOSFET-embedded high holding voltage silicon-controlled rectifier (NNEHHVSCR). In this structure, based on the conventional low-trigger SCR with added P+ bridge regions, the NMOSFET is further embedded, supplemented with external electrical connections. This configuration creates multiple ESD current paths to divert current, thereby enhancing the holding voltage. The working principle and <em>I</em>-<em>V</em> characteristic curves of the proposed structure are simulated using Sentaurus TCAD software. The results show that, compared to the reference device, while maintaining a nearly unchanged trigger voltage (<em>V</em><sub>t1</sub>), the NNEHHVSCR significantly increases the holding voltage (<em>V</em><sub>h</sub>) from 3.89 V to 6.03 V, surpassing the lower voltage limit defined by the 5-V ESD design window. Meanwhile, the failure current (<em>I</em><sub>t2</sub>) only decreases slightly from 2.00 A to 1.89 A, with an acceptable trade-off. Therefore, the NNEHHVSCR demonstrates excellent latch-up immunity and ESD robustness, making it suitable for 5-V ESD applications.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"159 ","pages":"Article 106625"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239125000748","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel NMOSFET-embedded high holding voltage silicon-controlled rectifier (NNEHHVSCR). In this structure, based on the conventional low-trigger SCR with added P+ bridge regions, the NMOSFET is further embedded, supplemented with external electrical connections. This configuration creates multiple ESD current paths to divert current, thereby enhancing the holding voltage. The working principle and I-V characteristic curves of the proposed structure are simulated using Sentaurus TCAD software. The results show that, compared to the reference device, while maintaining a nearly unchanged trigger voltage (Vt1), the NNEHHVSCR significantly increases the holding voltage (Vh) from 3.89 V to 6.03 V, surpassing the lower voltage limit defined by the 5-V ESD design window. Meanwhile, the failure current (It2) only decreases slightly from 2.00 A to 1.89 A, with an acceptable trade-off. Therefore, the NNEHHVSCR demonstrates excellent latch-up immunity and ESD robustness, making it suitable for 5-V ESD applications.
期刊介绍:
Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems.
The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc.
Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.