Pengyu Zeng , Wen Gao , Jizhizi Li , Jun Yin , Jiling Chen , Shuai Lu
{"title":"Automated residential layout generation and editing using natural language and images","authors":"Pengyu Zeng , Wen Gao , Jizhizi Li , Jun Yin , Jiling Chen , Shuai Lu","doi":"10.1016/j.autcon.2025.106133","DOIUrl":null,"url":null,"abstract":"<div><div>Architectural design, including for the most common residential buildings, is a complex process that typically requires iterative revisions by skilled architects. This paper addresses how to automate the generation and modification of residential layouts, to lower the design threshold and enable cost-effective, user-driven generation and editing. This paper proposes Text2FloorEdit, a framework that decomposes the design task into three components: Residential Layout Generation (RL-Net) for flexible residential layout generation; Window, Door, and Wall Generation (WD-Net) for detailed floor plan generation with lower training costs; and a 3D rendering system for visualisation. The proposed approach enables the efficient generation and modification of residential layouts using flexible inputs like natural language and images, without the need for multimodal datasets. This solution is particularly valuable for architects and non-professionals seeking cost-effective, user-friendly tools for automated residential design. This paper opens new directions in cross-modal generative models, with the potential to enhance architectural design automation.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"174 ","pages":"Article 106133"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525001736","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Architectural design, including for the most common residential buildings, is a complex process that typically requires iterative revisions by skilled architects. This paper addresses how to automate the generation and modification of residential layouts, to lower the design threshold and enable cost-effective, user-driven generation and editing. This paper proposes Text2FloorEdit, a framework that decomposes the design task into three components: Residential Layout Generation (RL-Net) for flexible residential layout generation; Window, Door, and Wall Generation (WD-Net) for detailed floor plan generation with lower training costs; and a 3D rendering system for visualisation. The proposed approach enables the efficient generation and modification of residential layouts using flexible inputs like natural language and images, without the need for multimodal datasets. This solution is particularly valuable for architects and non-professionals seeking cost-effective, user-friendly tools for automated residential design. This paper opens new directions in cross-modal generative models, with the potential to enhance architectural design automation.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.