Comprehensive evaluation of a gas turbine-based multi-generation system for power, heating, cooling, freshwater, hydrogen and ammonia: 4E assessment and multi-objective optimization with RSM desirability approach

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Sadık Ata
{"title":"Comprehensive evaluation of a gas turbine-based multi-generation system for power, heating, cooling, freshwater, hydrogen and ammonia: 4E assessment and multi-objective optimization with RSM desirability approach","authors":"Sadık Ata","doi":"10.1016/j.renene.2025.122900","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the production of power, heating, cooling, freshwater, hydrogen and ammonia in a gas turbine cycle (GTC)-based multi-energy system is analysed. From parametric study with energy, exergy, economic, environmental and exergo-enviro analyses, regression models were created for five different responses depending on the decision parameters. These are exergy efficiency (η<sub>ex</sub>), dynamic payback period (DPP-year), CO<sub>2</sub> footprint (kg/kWh), net present value (NPV-$) and levelized multi energy cost (LMEC-$/GJ). With these response values, bi-objective (BO), tri-objective (TO) and multi-objective optimization (MOO) studies including all responses were performed with Response Surface Method (RSM) and desirability function approach under various scenarios. In this context, RSM desirability plots and scores were generated by analyzing all binary (C(5,2)) and ternary C(5,3)) combinations of five different responses and MOO. As a result, a high desirability score of 0.8584 was obtained in MOO and an improvement of 2.19, 22.44, 1.37, 11.41 and 8.82 % was achieved for η<sub>ex</sub>, DPP-year, CO<sub>2</sub> footprint-kg/kWh, NPV-$, and LMEC-$/GJ, respectively compared to the base case. Based on all response values pertaining to the energy, exergy, economic, environmental performance of the multi-energy system with RSM optimization, a performance enhancement of 9.25 % was determined.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"246 ","pages":"Article 122900"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125005622","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the production of power, heating, cooling, freshwater, hydrogen and ammonia in a gas turbine cycle (GTC)-based multi-energy system is analysed. From parametric study with energy, exergy, economic, environmental and exergo-enviro analyses, regression models were created for five different responses depending on the decision parameters. These are exergy efficiency (ηex), dynamic payback period (DPP-year), CO2 footprint (kg/kWh), net present value (NPV-$) and levelized multi energy cost (LMEC-$/GJ). With these response values, bi-objective (BO), tri-objective (TO) and multi-objective optimization (MOO) studies including all responses were performed with Response Surface Method (RSM) and desirability function approach under various scenarios. In this context, RSM desirability plots and scores were generated by analyzing all binary (C(5,2)) and ternary C(5,3)) combinations of five different responses and MOO. As a result, a high desirability score of 0.8584 was obtained in MOO and an improvement of 2.19, 22.44, 1.37, 11.41 and 8.82 % was achieved for ηex, DPP-year, CO2 footprint-kg/kWh, NPV-$, and LMEC-$/GJ, respectively compared to the base case. Based on all response values pertaining to the energy, exergy, economic, environmental performance of the multi-energy system with RSM optimization, a performance enhancement of 9.25 % was determined.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信