A review of climate change impact assessment and methodologies for urban sewer networks

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
Amir Masoud Karimi, Mostafa Babaeian Jelodar, Teo Susnjak, Monty Sutrisna
{"title":"A review of climate change impact assessment and methodologies for urban sewer networks","authors":"Amir Masoud Karimi,&nbsp;Mostafa Babaeian Jelodar,&nbsp;Teo Susnjak,&nbsp;Monty Sutrisna","doi":"10.1016/j.rineng.2025.104625","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding how climate change affects urban sewer networks is essential for the sustainable management of these infrastructures. This research uses a systematic literature review (PRISMA) to critically review methodologies to assess the effects of climate change on these systems.</div><div>A scientometric analysis traced the evolution of research patterns, while content analysis identified three primary research clusters: Climate Modelling, Flow Modelling, and Risk and Vulnerability Assessment. These clusters, although rooted in distinct disciplines, form an interconnected framework, where outputs of climate models inform flow models, and overflow data from flow models contribute to risk assessments, which are gaining increasing attention in recent studies. To enhance risk assessments, methods like Gumbel Copula, Monte Carlo simulations, and fuzzy logic help quantify uncertainties. By integrating these uncertainties with a Bayesian Network, which can incorporate expert opinion, failure probabilities are modelled based on variable interactions, improving prediction.</div><div>The study also emphasises the importance of factors, such as urbanisation, asset deterioration, and adaptation programs in order to improve predictive accuracy. Additionally, the findings reveal the need to consider cascading effects from landslides and climate hazards in future risk assessments. This research provides a reference for methodology selection, promoting innovative and sustainable urban sewer management.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"26 ","pages":"Article 104625"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025007029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how climate change affects urban sewer networks is essential for the sustainable management of these infrastructures. This research uses a systematic literature review (PRISMA) to critically review methodologies to assess the effects of climate change on these systems.
A scientometric analysis traced the evolution of research patterns, while content analysis identified three primary research clusters: Climate Modelling, Flow Modelling, and Risk and Vulnerability Assessment. These clusters, although rooted in distinct disciplines, form an interconnected framework, where outputs of climate models inform flow models, and overflow data from flow models contribute to risk assessments, which are gaining increasing attention in recent studies. To enhance risk assessments, methods like Gumbel Copula, Monte Carlo simulations, and fuzzy logic help quantify uncertainties. By integrating these uncertainties with a Bayesian Network, which can incorporate expert opinion, failure probabilities are modelled based on variable interactions, improving prediction.
The study also emphasises the importance of factors, such as urbanisation, asset deterioration, and adaptation programs in order to improve predictive accuracy. Additionally, the findings reveal the need to consider cascading effects from landslides and climate hazards in future risk assessments. This research provides a reference for methodology selection, promoting innovative and sustainable urban sewer management.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信