Deep convolutional networks based on lightweight YOLOv8 to detect and estimate peanut losses from images in post-harvesting environments

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Armando Lopes de Brito Filho , Franciele Morlin Carneiro , Vinicius dos Santos Carreira , Danilo Tedesco , Jarlyson Brunno Costa Souza , Marcelo Rodrigues Barbosa Júnior , Rouverson Pereira da Silva
{"title":"Deep convolutional networks based on lightweight YOLOv8 to detect and estimate peanut losses from images in post-harvesting environments","authors":"Armando Lopes de Brito Filho ,&nbsp;Franciele Morlin Carneiro ,&nbsp;Vinicius dos Santos Carreira ,&nbsp;Danilo Tedesco ,&nbsp;Jarlyson Brunno Costa Souza ,&nbsp;Marcelo Rodrigues Barbosa Júnior ,&nbsp;Rouverson Pereira da Silva","doi":"10.1016/j.compag.2025.110282","DOIUrl":null,"url":null,"abstract":"<div><div>Peanut losses detection is key to monitor operational quality during mechanical harvesting. Current manual assessments faces practical limitations in the field, as they tend to be exhaustive, time-consuming, and susceptible to errors, especially after long work periods. Therefore, the main objective of this study was to develop an automated image processing framework to detect, count, and estimate peanut pod losses during the harvesting operation. We proposed a robust approach encompassing different environmental conditions and training detection algorithms, specifically based on lightweight YOLOv8 architecture, with images acquired with a mobile smartphone at six different times of the day (10 a.m., 11 a.m., 1 p.m., 2 p.m., 3 p.m., and 4 p.m.). The experimental results showed that detecting two-seed peanut pods was more effective than one-seed pods, with higher precision, recall, and mAP50 values. The best results for image acquisition were between 10 a.m. and 2 p.m. The study also compared manual and automated counting methods, revealing that the best scenarios for counting achieved an R<sup>2</sup> above 0.80. Furthermore, georeferenced maps of peanut losses revealed significant spatial variability, providing critical insights for targeted interventions. These findings demonstrate the potential to enhance mechanized harvesting efficiency and lay the groundwork for future integration into fully automated systems. By incorporating this method into harvesting machinery, real-time monitoring and accurate loss quantification can be achieved, substantially reducing the need for labor-intensive manual assessments.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"234 ","pages":"Article 110282"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925003886","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Peanut losses detection is key to monitor operational quality during mechanical harvesting. Current manual assessments faces practical limitations in the field, as they tend to be exhaustive, time-consuming, and susceptible to errors, especially after long work periods. Therefore, the main objective of this study was to develop an automated image processing framework to detect, count, and estimate peanut pod losses during the harvesting operation. We proposed a robust approach encompassing different environmental conditions and training detection algorithms, specifically based on lightweight YOLOv8 architecture, with images acquired with a mobile smartphone at six different times of the day (10 a.m., 11 a.m., 1 p.m., 2 p.m., 3 p.m., and 4 p.m.). The experimental results showed that detecting two-seed peanut pods was more effective than one-seed pods, with higher precision, recall, and mAP50 values. The best results for image acquisition were between 10 a.m. and 2 p.m. The study also compared manual and automated counting methods, revealing that the best scenarios for counting achieved an R2 above 0.80. Furthermore, georeferenced maps of peanut losses revealed significant spatial variability, providing critical insights for targeted interventions. These findings demonstrate the potential to enhance mechanized harvesting efficiency and lay the groundwork for future integration into fully automated systems. By incorporating this method into harvesting machinery, real-time monitoring and accurate loss quantification can be achieved, substantially reducing the need for labor-intensive manual assessments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信