Urban cooling and CO2 reduction potentials of mass deployment of heat pump water heaters in Tokyo

IF 6 2区 工程技术 Q1 ENVIRONMENTAL SCIENCES
Kazuki Yamaguchi , Yuya Takane , Tomohiko Ihara
{"title":"Urban cooling and CO2 reduction potentials of mass deployment of heat pump water heaters in Tokyo","authors":"Kazuki Yamaguchi ,&nbsp;Yuya Takane ,&nbsp;Tomohiko Ihara","doi":"10.1016/j.uclim.2025.102374","DOIUrl":null,"url":null,"abstract":"<div><div>Although countermeasures against nocturnal urban heat islands that cause health hazards are required, few measures with significant cooling potential at night are known. An air-source heat-pump water heater (HPWH) absorbs heat from the atmosphere to produce hot water and simultaneously emits a cold exhaust. The mass deployment of HPWHs is expected to contribute considerably to the improvement of urban thermal environments and mitigation of CO<sub>2</sub> emissions. To assess these contributions, we conducted a case study in Tokyo using an urban climate and energy model. The average peak value of summer nighttime temperature drop from HPWH reached 0.31 °C at the urban scale and exceeded 1 °C in residential areas with high hot water demand. This substantial temperature impact is attributed to stable atmospheric conditions at night. Here, urban vegetation was shown to reinforce this cooling effect by further stabilizing the nighttime atmosphere. The use of the HPWH resulted in a significant direct CO<sub>2</sub> reduction of 41–47 % from water-heating origin, and only a marginal indirect CO<sub>2</sub> increase from the space-heating origin. Given that the HPWH efficiency improves under high temperatures, the benefits of urban cooling and CO<sub>2</sub> reduction can be optimized by seasonally switching operation times.</div></div>","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"61 ","pages":"Article 102374"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212095525000902","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Although countermeasures against nocturnal urban heat islands that cause health hazards are required, few measures with significant cooling potential at night are known. An air-source heat-pump water heater (HPWH) absorbs heat from the atmosphere to produce hot water and simultaneously emits a cold exhaust. The mass deployment of HPWHs is expected to contribute considerably to the improvement of urban thermal environments and mitigation of CO2 emissions. To assess these contributions, we conducted a case study in Tokyo using an urban climate and energy model. The average peak value of summer nighttime temperature drop from HPWH reached 0.31 °C at the urban scale and exceeded 1 °C in residential areas with high hot water demand. This substantial temperature impact is attributed to stable atmospheric conditions at night. Here, urban vegetation was shown to reinforce this cooling effect by further stabilizing the nighttime atmosphere. The use of the HPWH resulted in a significant direct CO2 reduction of 41–47 % from water-heating origin, and only a marginal indirect CO2 increase from the space-heating origin. Given that the HPWH efficiency improves under high temperatures, the benefits of urban cooling and CO2 reduction can be optimized by seasonally switching operation times.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Urban Climate
Urban Climate Social Sciences-Urban Studies
CiteScore
9.70
自引率
9.40%
发文量
286
期刊介绍: Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following: Urban meteorology and climate[...] Urban environmental pollution[...] Adaptation to global change[...] Urban economic and social issues[...] Research Approaches[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信