Enhanced sampling simulations to explore himalayan phytochemicals as potential phosphodiesterase-1 inhibitor for neurological disorders

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bhanu Sharma , Rituraj Purohit
{"title":"Enhanced sampling simulations to explore himalayan phytochemicals as potential phosphodiesterase-1 inhibitor for neurological disorders","authors":"Bhanu Sharma ,&nbsp;Rituraj Purohit","doi":"10.1016/j.bbrc.2025.151614","DOIUrl":null,"url":null,"abstract":"<div><div>The rising incidence of neurological and neuropsychiatric disorders underscores the urgent need for innovative and evidence based treatment strategies. Phosphodiesterase-1 (PDE1) is a dual-substrate (cAMP/cGMP) phosphodiesterase expressed in the central nervous system and peripheral areas, which modulates cyclic nucleotide signaling cascades. Inhibiting PDE1 enhances cAMP/cGMP levels, promoting neuronal plasticity and neuroprotection, making it a promising therapeutic strategy for neurological disorders. The pursuit of targeting this enzyme for treating neurological and neuropsychiatric disorders has faced obstacles due to the absence of potent, selective, and brain-penetrating inhibitors. This study aimed to identify potent PDE1 inhibitors by leveraging a diverse collection of bioactive molecules derived from Himalayan flora through computational screening methods. The four most promising hit molecules were chosen for further investigation and subjected to Molecular Dynamics (MD) simulations, binding free energy calculations, along with standard molecules. It was found that the hit molecules stigmast-7, corilagin and emblicanin-A had formed the most stable complexes, and also, the least binding free energy was observed for stigmast-7 among the hit molecules. Additionally, the pulling simulations indicated that stigmast-7 and corilagin were the most robust binders, and required the highest force to dissociate from the binding cavity completely. The umbrella sampling simulations also revealed the lowest binding free energy for corilagin and stigmast-7. The insights gained from this study provide a foundation for future research into PDE1-targeted therapies, highlighting the potential of Himalayan bioactive compounds in developing novel therapeutic interventions.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"758 ","pages":"Article 151614"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25003286","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The rising incidence of neurological and neuropsychiatric disorders underscores the urgent need for innovative and evidence based treatment strategies. Phosphodiesterase-1 (PDE1) is a dual-substrate (cAMP/cGMP) phosphodiesterase expressed in the central nervous system and peripheral areas, which modulates cyclic nucleotide signaling cascades. Inhibiting PDE1 enhances cAMP/cGMP levels, promoting neuronal plasticity and neuroprotection, making it a promising therapeutic strategy for neurological disorders. The pursuit of targeting this enzyme for treating neurological and neuropsychiatric disorders has faced obstacles due to the absence of potent, selective, and brain-penetrating inhibitors. This study aimed to identify potent PDE1 inhibitors by leveraging a diverse collection of bioactive molecules derived from Himalayan flora through computational screening methods. The four most promising hit molecules were chosen for further investigation and subjected to Molecular Dynamics (MD) simulations, binding free energy calculations, along with standard molecules. It was found that the hit molecules stigmast-7, corilagin and emblicanin-A had formed the most stable complexes, and also, the least binding free energy was observed for stigmast-7 among the hit molecules. Additionally, the pulling simulations indicated that stigmast-7 and corilagin were the most robust binders, and required the highest force to dissociate from the binding cavity completely. The umbrella sampling simulations also revealed the lowest binding free energy for corilagin and stigmast-7. The insights gained from this study provide a foundation for future research into PDE1-targeted therapies, highlighting the potential of Himalayan bioactive compounds in developing novel therapeutic interventions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信