Optimizing the CRISPR/Cas9 system for gene editing in Yarrowia lipolytica

Jianhui Liu , Yamin Zhu , Jin Hou
{"title":"Optimizing the CRISPR/Cas9 system for gene editing in Yarrowia lipolytica","authors":"Jianhui Liu ,&nbsp;Yamin Zhu ,&nbsp;Jin Hou","doi":"10.1016/j.engmic.2025.100193","DOIUrl":null,"url":null,"abstract":"<div><div><em>Yarrowia lipolytica</em> is a promising host for producing valuable chemicals owing to its robustness and metabolic versatility. Efficient genome editing tools are essential for advancing its biotechnological applications. Although CRISPR/Cas9 technology has been applied in <em>Y. lipolytica</em>, achieving a consistently high editing performance remains challenging owing to the low homologous recombination efficiency and variability in system components. In this study, we optimized CRISPR/Cas9-mediated genome editing in <em>Y. lipolytica</em> to enhance its editing efficiency. Using the RNA polymerase III promoter <em>SCR1-tRNA</em> for sgRNA expression, we achieved a gene disruption efficiency of 92.5 %. The tRNA-sgRNA architecture enabled a dual gene disruption efficiency of 57.5 %. <em>KU70</em> deletion in the Cas9 system increased the integration efficiency to 92.5 %, and <em>Rad52</em> and <em>Sae2</em> overexpression boosted homologous recombination. The introduction of Cas9<sup>D147Y, P411T</sup> (iCas9) enhanced the efficiency of both gene disruption and genome integration. This study provides a powerful tool for efficient gene editing in <em>Y. lipolytica</em>, which will accelerate the construction of yeast cell factories.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 2","pages":"Article 100193"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370325000050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Yarrowia lipolytica is a promising host for producing valuable chemicals owing to its robustness and metabolic versatility. Efficient genome editing tools are essential for advancing its biotechnological applications. Although CRISPR/Cas9 technology has been applied in Y. lipolytica, achieving a consistently high editing performance remains challenging owing to the low homologous recombination efficiency and variability in system components. In this study, we optimized CRISPR/Cas9-mediated genome editing in Y. lipolytica to enhance its editing efficiency. Using the RNA polymerase III promoter SCR1-tRNA for sgRNA expression, we achieved a gene disruption efficiency of 92.5 %. The tRNA-sgRNA architecture enabled a dual gene disruption efficiency of 57.5 %. KU70 deletion in the Cas9 system increased the integration efficiency to 92.5 %, and Rad52 and Sae2 overexpression boosted homologous recombination. The introduction of Cas9D147Y, P411T (iCas9) enhanced the efficiency of both gene disruption and genome integration. This study provides a powerful tool for efficient gene editing in Y. lipolytica, which will accelerate the construction of yeast cell factories.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信