Meridional shifts of Brazil-Malvinas Confluence since the Last Glacial Maximum

IF 2.6 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Fang Gu , Karin A.F. Zonneveld , Hermann Behling
{"title":"Meridional shifts of Brazil-Malvinas Confluence since the Last Glacial Maximum","authors":"Fang Gu ,&nbsp;Karin A.F. Zonneveld ,&nbsp;Hermann Behling","doi":"10.1016/j.palaeo.2025.112897","DOIUrl":null,"url":null,"abstract":"<div><div>The Brazil-Malvinas Confluence (BMC) is a highly dynamic convergence of surface currents in the southwestern South Atlantic, where the warm Brazil Current (BC) from the tropical Atlantic meets the cold Malvinas Current (MC) that originates from the northern branch of the Antarctic Circumpolar Current. Meridional shifts of the BMC play an important role in controlling the heat transfer from the tropical Atlantic to the higher latitudes of the South Atlantic. In this study, the marine core GeoB13861–1 is analyzed for pollen, spores, freshwater algae, and organic-walled dinoflagellate cysts (dinocysts) to reconstruct marine and terrestrial paleoenvironmental changes in southeastern South America since the Last Glacial Maximum (LGM). The results indicate that during LGM, the BMC was at its northernmost location due to the strong influence of the MC. During that period, exposed coastal areas of Argentina were dominated by salt marshes shaped by low global sea level. From ∼18 to 15 cal kyr BP, the BMC migrated southward, contributing to more humid conditions on the adjacent continent. As sea level rose, former salt marshes along the coast were gradually flooded. The increased presence of <em>Nothofagus</em> and <em>Podocarpus</em> pollen in the marine record suggests a slight expansion of Andean forests during the Late Glacial, indicating the adjacent continental regions shifted to wetter conditions. Notably, our study confirms that the signals of abrupt climate events, such as Heinrich Stadial 1 (HS1) and Younger Dryas (YD), are well-preserved in the marine sediment records. Our new findings provide clear evidence of the bi-polar sea saw effect during HS1, marked by abrupt ocean warming in the South Atlantic.</div></div>","PeriodicalId":19928,"journal":{"name":"Palaeogeography, Palaeoclimatology, Palaeoecology","volume":"667 ","pages":"Article 112897"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaeogeography, Palaeoclimatology, Palaeoecology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031018225001828","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Brazil-Malvinas Confluence (BMC) is a highly dynamic convergence of surface currents in the southwestern South Atlantic, where the warm Brazil Current (BC) from the tropical Atlantic meets the cold Malvinas Current (MC) that originates from the northern branch of the Antarctic Circumpolar Current. Meridional shifts of the BMC play an important role in controlling the heat transfer from the tropical Atlantic to the higher latitudes of the South Atlantic. In this study, the marine core GeoB13861–1 is analyzed for pollen, spores, freshwater algae, and organic-walled dinoflagellate cysts (dinocysts) to reconstruct marine and terrestrial paleoenvironmental changes in southeastern South America since the Last Glacial Maximum (LGM). The results indicate that during LGM, the BMC was at its northernmost location due to the strong influence of the MC. During that period, exposed coastal areas of Argentina were dominated by salt marshes shaped by low global sea level. From ∼18 to 15 cal kyr BP, the BMC migrated southward, contributing to more humid conditions on the adjacent continent. As sea level rose, former salt marshes along the coast were gradually flooded. The increased presence of Nothofagus and Podocarpus pollen in the marine record suggests a slight expansion of Andean forests during the Late Glacial, indicating the adjacent continental regions shifted to wetter conditions. Notably, our study confirms that the signals of abrupt climate events, such as Heinrich Stadial 1 (HS1) and Younger Dryas (YD), are well-preserved in the marine sediment records. Our new findings provide clear evidence of the bi-polar sea saw effect during HS1, marked by abrupt ocean warming in the South Atlantic.
末次盛冰期以来巴西-马尔维纳斯合流的经向移动
巴西-马尔维纳斯合流(BMC)是南大西洋西南部表面流的高度动态辐合,来自热带大西洋的温暖的巴西流(BC)与来自南极环极流北部分支的寒冷的马尔维纳斯流(MC)在这里相遇。BMC的经向移动在控制热带大西洋向南大西洋高纬度地区的热传递中起着重要作用。本文通过对GeoB13861-1海洋岩心的花粉、孢子、淡水藻类和有机壁鞭毛藻囊(dinocysts)进行分析,重建了末次盛冰期以来南美东南部海洋和陆地的古环境变化。结果表明,在LGM期间,由于MC的强烈影响,BMC位于其最北端。在此期间,阿根廷暴露的沿海地区以全球低海平面形成的盐沼为主。从~ 18 ~ 15 calkyr BP, BMC向南迁移,使邻近大陆的条件更加潮湿。随着海平面的上升,以前沿海岸的盐沼逐渐被淹没。海洋记录中Nothofagus和Podocarpus花粉的增加表明,安第斯森林在晚冰期略有扩张,表明邻近的大陆地区转向更湿润的条件。值得注意的是,我们的研究证实了气候突变事件的信号,如Heinrich Stadial 1 (HS1)和Younger Dryas (YD),在海洋沉积物记录中保存得很好。我们的新发现为HS1期间的双极海洋效应提供了明确的证据,其标志是南大西洋海洋突然变暖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
10.00%
发文量
398
审稿时长
3.8 months
期刊介绍: Palaeogeography, Palaeoclimatology, Palaeoecology is an international medium for the publication of high quality and multidisciplinary, original studies and comprehensive reviews in the field of palaeo-environmental geology. The journal aims at bringing together data with global implications from research in the many different disciplines involved in palaeo-environmental investigations. By cutting across the boundaries of established sciences, it provides an interdisciplinary forum where issues of general interest can be discussed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信