Catalytic mechanisms and metal ion specificity of class II fructose-1,6-bisphosphatases: A QM/MM study

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL
Jian Wang, Lu Wang, Yinsi Ma, Xue-Ju Lv
{"title":"Catalytic mechanisms and metal ion specificity of class II fructose-1,6-bisphosphatases: A QM/MM study","authors":"Jian Wang,&nbsp;Lu Wang,&nbsp;Yinsi Ma,&nbsp;Xue-Ju Lv","doi":"10.1016/j.chemphys.2025.112704","DOIUrl":null,"url":null,"abstract":"<div><div>Class II Fructose-1,6-bisphosphatases (FBPaseII) play an essential role in gluconeogenesis of bacteria and exhibit conserved catalytic ability with their crucial threonine residue. The activity of FBPaseII is affected when the native metal ion cofactor is replaced. In this study, we developed the FBPaseII catalytic complex models for different species <em>Francisella tularensis</em> and <em>Mycobacterium tuberculosis,</em> with different divalent metal cation Mn<sup>2+</sup> and Mg<sup>2+</sup>. We simulated the two-step reaction using the Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics (MD) method. The results suggest that the Mg<sup>2+</sup> in FtFBPase and Mn<sup>2+</sup> in MtFBPase significantly increase the reaction barrier of FBPaseII, especially in the first step of the reaction. Additionally, we analyzed the stability of the metal ion and the behavior of the water molecules in the active site during the reaction. We propose that the metal ion in the active site plays a role in recruiting water molecules to the reaction center.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"595 ","pages":"Article 112704"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425001053","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Class II Fructose-1,6-bisphosphatases (FBPaseII) play an essential role in gluconeogenesis of bacteria and exhibit conserved catalytic ability with their crucial threonine residue. The activity of FBPaseII is affected when the native metal ion cofactor is replaced. In this study, we developed the FBPaseII catalytic complex models for different species Francisella tularensis and Mycobacterium tuberculosis, with different divalent metal cation Mn2+ and Mg2+. We simulated the two-step reaction using the Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics (MD) method. The results suggest that the Mg2+ in FtFBPase and Mn2+ in MtFBPase significantly increase the reaction barrier of FBPaseII, especially in the first step of the reaction. Additionally, we analyzed the stability of the metal ion and the behavior of the water molecules in the active site during the reaction. We propose that the metal ion in the active site plays a role in recruiting water molecules to the reaction center.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信