PySpectro: A modular 3D printed, machine learning assisted optical device for recognition and quantification of samples

IF 4.3 2区 化学 Q1 SPECTROSCOPY
Cristian Grazioli, Michele Abate, Nicolò Dossi
{"title":"PySpectro: A modular 3D printed, machine learning assisted optical device for recognition and quantification of samples","authors":"Cristian Grazioli,&nbsp;Michele Abate,&nbsp;Nicolò Dossi","doi":"10.1016/j.saa.2025.126058","DOIUrl":null,"url":null,"abstract":"<div><div>Over the past decade, science and technology have achieved great advancements driven by the synergy between materials and manufacturing processes; coupled with the growth of informatics, which offers powerful tools to process and interpret data, new analytical devices have been developed. This work describes a modular 3D printed instrument that utilizes the AS7262 light sensor coupled with a LED to perform absorbance and reflectance measurements. The mode of operation can be switched by conveniently attaching different 3D printed parts. An Arduino Nano is used for operating the electronics, and a python-based software is employed for data handling. The device, beside spectra acquisition, allows rapid identification and quantification of samples through a database and machine learning (ML) algorithms. A recursive methodology for regression specifically designed allowed sample quantification in a range spanning around 2.5 orders of magnitude with errors generally below 10%. PySpectro was used on homogeneous solution and on PADs (Paper-based Analytical Devices) for food dyes and phosphomolybdic assay for phosphate. The device may find applications in any colorimetric detection also outside the laboratory environment and can be a time-saving tool for fast preliminary determinations or educational purposes.</div></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":"336 ","pages":"Article 126058"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142525003646","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decade, science and technology have achieved great advancements driven by the synergy between materials and manufacturing processes; coupled with the growth of informatics, which offers powerful tools to process and interpret data, new analytical devices have been developed. This work describes a modular 3D printed instrument that utilizes the AS7262 light sensor coupled with a LED to perform absorbance and reflectance measurements. The mode of operation can be switched by conveniently attaching different 3D printed parts. An Arduino Nano is used for operating the electronics, and a python-based software is employed for data handling. The device, beside spectra acquisition, allows rapid identification and quantification of samples through a database and machine learning (ML) algorithms. A recursive methodology for regression specifically designed allowed sample quantification in a range spanning around 2.5 orders of magnitude with errors generally below 10%. PySpectro was used on homogeneous solution and on PADs (Paper-based Analytical Devices) for food dyes and phosphomolybdic assay for phosphate. The device may find applications in any colorimetric detection also outside the laboratory environment and can be a time-saving tool for fast preliminary determinations or educational purposes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信