Investigating lithium-ion battery discharge capacity under variable operating conditions using nature-inspired hybrid algorithms with minimal descriptors

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Yakubu Sani Wudil , M.A. Gondal , Mohammed A. Al-Osta
{"title":"Investigating lithium-ion battery discharge capacity under variable operating conditions using nature-inspired hybrid algorithms with minimal descriptors","authors":"Yakubu Sani Wudil ,&nbsp;M.A. Gondal ,&nbsp;Mohammed A. Al-Osta","doi":"10.1016/j.est.2025.116310","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and timely lithium-ion battery discharge capacity prediction is vital for ensuring the safety, reliability, and performance of electric vehicles and grid energy storage systems. However, the aging mechanism of batteries is highly dynamic and complex, posing significant challenges for effective modeling. This paper presents a novel interpretable machine-learning approach that stands out by predicting discharge capacity under variable operating conditions using minimal input descriptors. Three nature-inspired hybrid machine learning algorithms were developed: Quantum-inspired Particle Swarm Optimization-Adaboost (QIPSO-ADB), Harris Hawks Optimization- Extreme Gradient Boosting Machine (HHO-GBM), and Sparrow Search Algorithm-Light Gradient Boosting Machine (SSA-LGBM). We demonstrate that discharge capacity across cycles can be accurately predicted using only temperature and cycle number, thus simplifying model inputs while maintaining high accuracy. Two model series were evaluated: Combo1 (C1), incorporating all input descriptors, and Combo2 (C2), using only temperature and cycle number. All three hybrid models demonstrated strong predictive performance under variable conditions. Notably, the HHO-GBM-C1 model achieved the highest prediction accuracy, with a mean absolute error (MAE) of 0.0816 and a correlation coefficient of 95.2 % during the testing phase. For the reduced-descriptor series, HHO-GBM-C2 achieved a low MAE of 0.1438 and a correlation coefficient of 85.99 %. Validation was performed using multiple samples from eVTOL and MIT public datasets, confirming the robustness and generalizability of the models across both variable and fixed operating conditions. These findings provide strategic insights for optimizing battery performance, contributing significantly to the development of reliable electric vehicles and sustainable energy storage solutions.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"118 ","pages":"Article 116310"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25010230","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and timely lithium-ion battery discharge capacity prediction is vital for ensuring the safety, reliability, and performance of electric vehicles and grid energy storage systems. However, the aging mechanism of batteries is highly dynamic and complex, posing significant challenges for effective modeling. This paper presents a novel interpretable machine-learning approach that stands out by predicting discharge capacity under variable operating conditions using minimal input descriptors. Three nature-inspired hybrid machine learning algorithms were developed: Quantum-inspired Particle Swarm Optimization-Adaboost (QIPSO-ADB), Harris Hawks Optimization- Extreme Gradient Boosting Machine (HHO-GBM), and Sparrow Search Algorithm-Light Gradient Boosting Machine (SSA-LGBM). We demonstrate that discharge capacity across cycles can be accurately predicted using only temperature and cycle number, thus simplifying model inputs while maintaining high accuracy. Two model series were evaluated: Combo1 (C1), incorporating all input descriptors, and Combo2 (C2), using only temperature and cycle number. All three hybrid models demonstrated strong predictive performance under variable conditions. Notably, the HHO-GBM-C1 model achieved the highest prediction accuracy, with a mean absolute error (MAE) of 0.0816 and a correlation coefficient of 95.2 % during the testing phase. For the reduced-descriptor series, HHO-GBM-C2 achieved a low MAE of 0.1438 and a correlation coefficient of 85.99 %. Validation was performed using multiple samples from eVTOL and MIT public datasets, confirming the robustness and generalizability of the models across both variable and fixed operating conditions. These findings provide strategic insights for optimizing battery performance, contributing significantly to the development of reliable electric vehicles and sustainable energy storage solutions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信