Federated Knowledge Recycling: Privacy-preserving synthetic data sharing

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Eugenio Lomurno, Matteo Matteucci
{"title":"Federated Knowledge Recycling: Privacy-preserving synthetic data sharing","authors":"Eugenio Lomurno,&nbsp;Matteo Matteucci","doi":"10.1016/j.patrec.2025.02.030","DOIUrl":null,"url":null,"abstract":"<div><div>Federated learning has emerged as a paradigm for collaborative learning, enabling the development of robust models without the need to centralise sensitive data. However, conventional federated learning techniques have privacy and security vulnerabilities due to the exposure of models, parameters or updates, which can be exploited as an attack surface. This paper presents Federated Knowledge Recycling (FedKR), a cross-silo federated learning approach that uses locally generated synthetic data to facilitate collaboration between institutions. FedKR combines advanced data generation techniques with a dynamic aggregation process to provide greater security against privacy attacks than existing methods, significantly reducing the attack surface. Experimental results on generic and medical datasets show that FedKR achieves competitive performance, with an average improvement in accuracy of 4.24% compared to training models from local data, demonstrating particular effectiveness in data scarcity scenarios.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"191 ","pages":"Pages 124-130"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525000807","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning has emerged as a paradigm for collaborative learning, enabling the development of robust models without the need to centralise sensitive data. However, conventional federated learning techniques have privacy and security vulnerabilities due to the exposure of models, parameters or updates, which can be exploited as an attack surface. This paper presents Federated Knowledge Recycling (FedKR), a cross-silo federated learning approach that uses locally generated synthetic data to facilitate collaboration between institutions. FedKR combines advanced data generation techniques with a dynamic aggregation process to provide greater security against privacy attacks than existing methods, significantly reducing the attack surface. Experimental results on generic and medical datasets show that FedKR achieves competitive performance, with an average improvement in accuracy of 4.24% compared to training models from local data, demonstrating particular effectiveness in data scarcity scenarios.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信