Influence of wall thickness on the seismic performance of thin-walled precast UHPC hollow piers

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Xu Wang , Zhao Liu , Jesús-Miguel Bairán , Wenshan Li
{"title":"Influence of wall thickness on the seismic performance of thin-walled precast UHPC hollow piers","authors":"Xu Wang ,&nbsp;Zhao Liu ,&nbsp;Jesús-Miguel Bairán ,&nbsp;Wenshan Li","doi":"10.1016/j.tws.2025.113205","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional precast piers made of normal concrete (NC) typically feature a solid section, which may hinder hoisting and transportation during construction. Given the superior properties of ultra-high-performance concrete (UHPC), replacing the NC solid section with a UHPC hollow section presents a viable alternative. However, the seismic performance of thin-walled piers will be different from the solid piers. Current research on the seismic performance of hollow piers primarily focuses on cast-in-place (CIP) piers made of normal concrete, which generally have thick walls and a hollow ratio &lt;0.4. The exceptional mechanical properties and fluidity of UHPC make it feasible to reduce wall thickness in hollow piers. Nevertheless, studies specifically investigating the seismic performance of UHPC hollow piers remain limited. This study presents an experimental investigation of four precast piers with varying wall thicknesses—three made of UHPC and one made of NC as a reference. Quasi-static tests were conducted and the hysteretic responses, energy dissipation, residual displacement, and curvature distribution were discussed. Finally, a refined numerical model was developed on OpenSees platform to accurately replicate the hysteretic and skeleton curves of each specimen. Parametric and time-history analyses were conducted under six strong near-fault ground motions. The results revealed that wall thickness had a limited effect on the strength and residual displacement of UHPC hollow piers, but significantly influenced cumulative energy dissipation and stiffness degradation. The UHPC pier with a hollow ratio of 0.36 exhibited the best strength and displacement responses among all specimens.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"212 ","pages":"Article 113205"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026382312500299X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional precast piers made of normal concrete (NC) typically feature a solid section, which may hinder hoisting and transportation during construction. Given the superior properties of ultra-high-performance concrete (UHPC), replacing the NC solid section with a UHPC hollow section presents a viable alternative. However, the seismic performance of thin-walled piers will be different from the solid piers. Current research on the seismic performance of hollow piers primarily focuses on cast-in-place (CIP) piers made of normal concrete, which generally have thick walls and a hollow ratio <0.4. The exceptional mechanical properties and fluidity of UHPC make it feasible to reduce wall thickness in hollow piers. Nevertheless, studies specifically investigating the seismic performance of UHPC hollow piers remain limited. This study presents an experimental investigation of four precast piers with varying wall thicknesses—three made of UHPC and one made of NC as a reference. Quasi-static tests were conducted and the hysteretic responses, energy dissipation, residual displacement, and curvature distribution were discussed. Finally, a refined numerical model was developed on OpenSees platform to accurately replicate the hysteretic and skeleton curves of each specimen. Parametric and time-history analyses were conducted under six strong near-fault ground motions. The results revealed that wall thickness had a limited effect on the strength and residual displacement of UHPC hollow piers, but significantly influenced cumulative energy dissipation and stiffness degradation. The UHPC pier with a hollow ratio of 0.36 exhibited the best strength and displacement responses among all specimens.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信