Enhanced matrix completion technique for blade tip timing signal

IF 7.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Jiahui Cao , Zhibo Yang , Hongfei Zu , Bo Yan , Xuefeng Chen
{"title":"Enhanced matrix completion technique for blade tip timing signal","authors":"Jiahui Cao ,&nbsp;Zhibo Yang ,&nbsp;Hongfei Zu ,&nbsp;Bo Yan ,&nbsp;Xuefeng Chen","doi":"10.1016/j.ymssp.2025.112565","DOIUrl":null,"url":null,"abstract":"<div><div>Blade tip timing (BTT) is a potential non-contact vibration measurement for rotating blades. Identifying characteristic parameters or recovering the (power) spectrum of vibrations for condition monitoring from BTT data is a critical issue in the actual application. However, due to the measurement principle and installation restrictions, BTT signal is severely undersampled and then is hard to be analyzed by traditional signal processing methods. To clear the obstacle caused by undersampling on the application of BTT, we proposed an enhanced matrix completion technique (EMCT) for BTT signal post-processing. EMCT contains two procedures: covariance (matrix) reconstruction and followed by parameter estimations. First, based on the finding that the covariance matrix of BTT data is a low-rank and symmetric positive semidefinite Toeplitz matrix, we develop a matrix completion algorithm to reconstruct covariance. Then, based on the reconstructed covariance matrix, we extract frequency and amplitude/power parameters using root-MUSIC and least square algorithms. Due to dual structural prior, EMCT performs better than covariance-based methods relying on a single prior in estimation accuracy and precision. More importantly, EMCT also shows potential in reducing the number of probes. In addition, due to its gridless nature, EMCT is free from the basis mismatch issue and can achieve continuous parameter estimation. Finally, the effectiveness of EMCT has been repeatedly validated by both simulations and experiments.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"230 ","pages":"Article 112565"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327025002663","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Blade tip timing (BTT) is a potential non-contact vibration measurement for rotating blades. Identifying characteristic parameters or recovering the (power) spectrum of vibrations for condition monitoring from BTT data is a critical issue in the actual application. However, due to the measurement principle and installation restrictions, BTT signal is severely undersampled and then is hard to be analyzed by traditional signal processing methods. To clear the obstacle caused by undersampling on the application of BTT, we proposed an enhanced matrix completion technique (EMCT) for BTT signal post-processing. EMCT contains two procedures: covariance (matrix) reconstruction and followed by parameter estimations. First, based on the finding that the covariance matrix of BTT data is a low-rank and symmetric positive semidefinite Toeplitz matrix, we develop a matrix completion algorithm to reconstruct covariance. Then, based on the reconstructed covariance matrix, we extract frequency and amplitude/power parameters using root-MUSIC and least square algorithms. Due to dual structural prior, EMCT performs better than covariance-based methods relying on a single prior in estimation accuracy and precision. More importantly, EMCT also shows potential in reducing the number of probes. In addition, due to its gridless nature, EMCT is free from the basis mismatch issue and can achieve continuous parameter estimation. Finally, the effectiveness of EMCT has been repeatedly validated by both simulations and experiments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信