Ultrasound-induced modification of pea pod protein concentrate

IF 6.2 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Semanur Yildiz , Gulsah Karabulut , Asli Can Karaca , Oktay Yemiş
{"title":"Ultrasound-induced modification of pea pod protein concentrate","authors":"Semanur Yildiz ,&nbsp;Gulsah Karabulut ,&nbsp;Asli Can Karaca ,&nbsp;Oktay Yemiş","doi":"10.1016/j.crfs.2025.101031","DOIUrl":null,"url":null,"abstract":"<div><div>Agricultural by-products have emerged as valuable resources for the sustainable production of high-quality food ingredients. Ultrasound, a novel and environmentally friendly technology, is an effective physical method for solvent-free protein modifications. This study explores the conversion of pea pods as an agricultural by-product into value-added protein-based food ingredients with multifunctional properties enhanced by high-intensity ultrasound (US). Pea pod protein concentrate in the native form (PPPC-N) obtained by alkaline extraction/isoelectric precipitation was subjected to ultrasound-induced protein modification using response surface methodology at varying amplitude (40–80 %), time (2–20 min), and protein concentration (1–5 % w/v). The US process parameters were separately optimized based on maximum solubility, emulsification, and antioxidant activity. Protein concentrates were characterized at optimal conditions (80 % amplitude, 11 min, and 1 % protein; the desirability of 0.964) based on the maximum emulsification. The optimized PPPC by US (PPPC-US) exhibited a superior solubility performance compared to PPPC-N in the pH range of 2.0–9.0. The optimal US treatment enhanced the emulsifying attributes and foaming capacity of PPPC-N with an increase of 49 %. Moreover, oil binding capacity significantly increased while water binding capacity and foam stability decreased. Developing functional ingredients from pea pod proteins can open new possibilities in formulating innovative products.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"Article 101031"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927125000620","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Agricultural by-products have emerged as valuable resources for the sustainable production of high-quality food ingredients. Ultrasound, a novel and environmentally friendly technology, is an effective physical method for solvent-free protein modifications. This study explores the conversion of pea pods as an agricultural by-product into value-added protein-based food ingredients with multifunctional properties enhanced by high-intensity ultrasound (US). Pea pod protein concentrate in the native form (PPPC-N) obtained by alkaline extraction/isoelectric precipitation was subjected to ultrasound-induced protein modification using response surface methodology at varying amplitude (40–80 %), time (2–20 min), and protein concentration (1–5 % w/v). The US process parameters were separately optimized based on maximum solubility, emulsification, and antioxidant activity. Protein concentrates were characterized at optimal conditions (80 % amplitude, 11 min, and 1 % protein; the desirability of 0.964) based on the maximum emulsification. The optimized PPPC by US (PPPC-US) exhibited a superior solubility performance compared to PPPC-N in the pH range of 2.0–9.0. The optimal US treatment enhanced the emulsifying attributes and foaming capacity of PPPC-N with an increase of 49 %. Moreover, oil binding capacity significantly increased while water binding capacity and foam stability decreased. Developing functional ingredients from pea pod proteins can open new possibilities in formulating innovative products.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Food Science
Current Research in Food Science Agricultural and Biological Sciences-Food Science
CiteScore
7.40
自引率
3.20%
发文量
232
审稿时长
84 days
期刊介绍: Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信