Impact of specific power input and treatment chamber design on product-process-interactions during ohmic baking of wheat bread

IF 5.3 2区 农林科学 Q1 ENGINEERING, CHEMICAL
Kate Waldert, Nina Martinović, Sandra Bittermann, Felix Schottroff, Henry Jäger
{"title":"Impact of specific power input and treatment chamber design on product-process-interactions during ohmic baking of wheat bread","authors":"Kate Waldert,&nbsp;Nina Martinović,&nbsp;Sandra Bittermann,&nbsp;Felix Schottroff,&nbsp;Henry Jäger","doi":"10.1016/j.jfoodeng.2025.112569","DOIUrl":null,"url":null,"abstract":"<div><div>Ohmic baking presents an innovative alternative to conventional baking processes. To transfer processing concepts into applications, it is crucial to understand the intricate interactions between product and process, that currently remain largely unexplored. Thus, this study delved into the ohmic baking of wheat bread and the effects of specific power input (1, 3 and 5 kW/kg) on temperature distribution, dough expansion and progression of electrical conductivity. Various parallel plate treatment chamber configurations were employed for the ohmic heating of 300 g of wheat bread dough. The use of 5 kW/kg significantly reduced baking times necessary to obtain a defined target temperature level and distribution (up to 84 %) compared to the use of 1 kW/kg, with a minimum heating duration of 50 s and a total energy consumption of 21 Wh. Lower specific power levels (<span><math><mrow><mo>≤</mo></mrow></math></span> 3 kW/kg) revealed benefits in terms of minimized instances of local high current density. A temperature-dependent inverse relation between the dough expansion (up to 2.8-fold) and the decrease in electrical conductivity during heating was observed. The design of the treatment chambers impacted temperature uniformity and the occurrence of over- or underprocessed product sections. Chambers with thin electrodes of low height and extensive surface area exhibited benefits such as enhanced water evaporation and reduced heat loss.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"396 ","pages":"Article 112569"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877425001049","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ohmic baking presents an innovative alternative to conventional baking processes. To transfer processing concepts into applications, it is crucial to understand the intricate interactions between product and process, that currently remain largely unexplored. Thus, this study delved into the ohmic baking of wheat bread and the effects of specific power input (1, 3 and 5 kW/kg) on temperature distribution, dough expansion and progression of electrical conductivity. Various parallel plate treatment chamber configurations were employed for the ohmic heating of 300 g of wheat bread dough. The use of 5 kW/kg significantly reduced baking times necessary to obtain a defined target temperature level and distribution (up to 84 %) compared to the use of 1 kW/kg, with a minimum heating duration of 50 s and a total energy consumption of 21 Wh. Lower specific power levels ( 3 kW/kg) revealed benefits in terms of minimized instances of local high current density. A temperature-dependent inverse relation between the dough expansion (up to 2.8-fold) and the decrease in electrical conductivity during heating was observed. The design of the treatment chambers impacted temperature uniformity and the occurrence of over- or underprocessed product sections. Chambers with thin electrodes of low height and extensive surface area exhibited benefits such as enhanced water evaporation and reduced heat loss.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Food Engineering
Journal of Food Engineering 工程技术-工程:化工
CiteScore
11.80
自引率
5.50%
发文量
275
审稿时长
24 days
期刊介绍: The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including: Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes. Accounts of food engineering achievements are of particular value.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信