Zearalenone (ZEN) impairs motor function and induces neurotoxicity via inflammatory pathways: Evidence from zebrafish models and molecular docking studies

IF 3.9 3区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ting Xu , Yuanfeng Xiong , Mi Zhou , Mingyang Wang , Dianxia Xing , Jiyin Zhang , Bo Wang , Yu Xu
{"title":"Zearalenone (ZEN) impairs motor function and induces neurotoxicity via inflammatory pathways: Evidence from zebrafish models and molecular docking studies","authors":"Ting Xu ,&nbsp;Yuanfeng Xiong ,&nbsp;Mi Zhou ,&nbsp;Mingyang Wang ,&nbsp;Dianxia Xing ,&nbsp;Jiyin Zhang ,&nbsp;Bo Wang ,&nbsp;Yu Xu","doi":"10.1016/j.cbpc.2025.110194","DOIUrl":null,"url":null,"abstract":"<div><div>ZEN is a low-molecular-weight food contaminant that is frequently detected in various crops and regions due to its high thermal stability and persistence. It poses a significant threat to the biological nervous system. However, the molecular mechanisms underlying ZEN-induced neurotoxicity remain incompletely understood. To further explore this issue, this study focused on the effects of ZEN on the nervous system, particularly its key targets and related molecular mechanisms. The study combined network toxicology and molecular docking methods and performed behavioral analysis of zebrafish larvae exposed to ZEN.</div><div>Firstly, motor capacity tests revealed that ZEN exposure significantly reduced the overall movement speed of zebrafish larvae during both photoperiod and dark cycles. We then identified 141 potential targets associated with ZEN-induced neurotoxicity from the GeneCards, OMIM, and DrugBank databases. Further screening using STRING and Cytoscape software extracted 25 key nodes, including TP53, AKT1, CASP3, MAPK3, and NFKB1. Analysis of GO and KEGG pathways suggested 20 of the most relevant signaling pathways and indicated that the core targets of ZEN-induced neurotoxicity were primarily involved in inflammatory pathways. Molecular docking using AutoDock further confirmed the strong binding affinity between ZEN and the targets. All six core target proteins exhibited strong binding affinity with ZEN, with binding energies of less than −7.</div><div>In summary, the results of this study suggest that ZEN may impact cognitive dysfunction and neuropathy by activating neuroinflammatory signaling pathways, ultimately leading to neuronal death. This study provides important insights into the molecular mechanisms of ZEN-induced neurotoxicity and highlights the potential for prevention and treatment of diseases associated with exposure to ZEN and similar food contaminants.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"294 ","pages":"Article 110194"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045625000754","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ZEN is a low-molecular-weight food contaminant that is frequently detected in various crops and regions due to its high thermal stability and persistence. It poses a significant threat to the biological nervous system. However, the molecular mechanisms underlying ZEN-induced neurotoxicity remain incompletely understood. To further explore this issue, this study focused on the effects of ZEN on the nervous system, particularly its key targets and related molecular mechanisms. The study combined network toxicology and molecular docking methods and performed behavioral analysis of zebrafish larvae exposed to ZEN.
Firstly, motor capacity tests revealed that ZEN exposure significantly reduced the overall movement speed of zebrafish larvae during both photoperiod and dark cycles. We then identified 141 potential targets associated with ZEN-induced neurotoxicity from the GeneCards, OMIM, and DrugBank databases. Further screening using STRING and Cytoscape software extracted 25 key nodes, including TP53, AKT1, CASP3, MAPK3, and NFKB1. Analysis of GO and KEGG pathways suggested 20 of the most relevant signaling pathways and indicated that the core targets of ZEN-induced neurotoxicity were primarily involved in inflammatory pathways. Molecular docking using AutoDock further confirmed the strong binding affinity between ZEN and the targets. All six core target proteins exhibited strong binding affinity with ZEN, with binding energies of less than −7.
In summary, the results of this study suggest that ZEN may impact cognitive dysfunction and neuropathy by activating neuroinflammatory signaling pathways, ultimately leading to neuronal death. This study provides important insights into the molecular mechanisms of ZEN-induced neurotoxicity and highlights the potential for prevention and treatment of diseases associated with exposure to ZEN and similar food contaminants.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
5.10%
发文量
206
审稿时长
30 days
期刊介绍: Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信