Structure, transduction pathway, behavior and toxicity of fish olfactory in aquatic environments

IF 3.9 3区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ning Yue , Dan Li , Yanling Pan , Liting Chen , Sisi Liu , Meifang Hou , Yongju Luo
{"title":"Structure, transduction pathway, behavior and toxicity of fish olfactory in aquatic environments","authors":"Ning Yue ,&nbsp;Dan Li ,&nbsp;Yanling Pan ,&nbsp;Liting Chen ,&nbsp;Sisi Liu ,&nbsp;Meifang Hou ,&nbsp;Yongju Luo","doi":"10.1016/j.cbpc.2025.110195","DOIUrl":null,"url":null,"abstract":"<div><div>The olfactory system in teleost fish plays a vital role as chemosensory organ that directly interacts with the aquatic environment, exhibiting high sensitivity to chemical alteration in aquatic environments. However, despite its importance, there has been a lack of systematic reviews in the past decade on fish olfactory structure, transduction mechanisms, and the impact of environmental pollutants on olfactory toxicity. This study analyzed 272 relevant studies, focusing on the role of the olfactory system and the disruption of olfactory function by contaminants. Fish processes odors through olfactory receptor neurons, olfactory nerves, mitral/ruffed cells, glomeruli, and neurotransmitters, mediated by membrane potentials resulting from ion channels in the olfactory epithelium and olfactory bulb, which are then relayed to higher brain regions via the medial olfactory tracts and lateral olfactory tracts for further integration and modulation. This process minimizes the overlap between complex odor sets, ensuring distinct representation of each odor and eliciting appropriate olfactory-mediated behaviors, such as feeding, migration, alarm responses, and reproduction. Current research identifies four main types of contaminants affecting the fish olfactory system: heavy metals (51.60 %), organic contaminants (33.79 %), acidification (12.33 %), and salinity (5.94 %). The main mechanisms of impact are: morphological changes (21.19 %), alterations in olfactory receptors (29.24 %), damage to olfactory receptor neurons and neurotransmitters disruption (26.69 %), plasticity (2.97 %), and defense mechanisms (19.92 %). We also identify uncertainties and proposes future research directions on the effects of contaminants on fish olfactory. Overall, this review provides valuable insights into the toxicity of contaminants on fish olfactory.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"294 ","pages":"Article 110195"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045625000766","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The olfactory system in teleost fish plays a vital role as chemosensory organ that directly interacts with the aquatic environment, exhibiting high sensitivity to chemical alteration in aquatic environments. However, despite its importance, there has been a lack of systematic reviews in the past decade on fish olfactory structure, transduction mechanisms, and the impact of environmental pollutants on olfactory toxicity. This study analyzed 272 relevant studies, focusing on the role of the olfactory system and the disruption of olfactory function by contaminants. Fish processes odors through olfactory receptor neurons, olfactory nerves, mitral/ruffed cells, glomeruli, and neurotransmitters, mediated by membrane potentials resulting from ion channels in the olfactory epithelium and olfactory bulb, which are then relayed to higher brain regions via the medial olfactory tracts and lateral olfactory tracts for further integration and modulation. This process minimizes the overlap between complex odor sets, ensuring distinct representation of each odor and eliciting appropriate olfactory-mediated behaviors, such as feeding, migration, alarm responses, and reproduction. Current research identifies four main types of contaminants affecting the fish olfactory system: heavy metals (51.60 %), organic contaminants (33.79 %), acidification (12.33 %), and salinity (5.94 %). The main mechanisms of impact are: morphological changes (21.19 %), alterations in olfactory receptors (29.24 %), damage to olfactory receptor neurons and neurotransmitters disruption (26.69 %), plasticity (2.97 %), and defense mechanisms (19.92 %). We also identify uncertainties and proposes future research directions on the effects of contaminants on fish olfactory. Overall, this review provides valuable insights into the toxicity of contaminants on fish olfactory.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
5.10%
发文量
206
审稿时长
30 days
期刊介绍: Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信