Investigating banks’ social media content and consumer reactions with machine learning

Q1 Economics, Econometrics and Finance
Gombos Nóra, Julianna , Vlaszov Artúr , Bíró-Szigeti Szilvia , Molontay Roland
{"title":"Investigating banks’ social media content and consumer reactions with machine learning","authors":"Gombos Nóra, Julianna ,&nbsp;Vlaszov Artúr ,&nbsp;Bíró-Szigeti Szilvia ,&nbsp;Molontay Roland","doi":"10.1016/j.joitmc.2025.100512","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>The research examines the Twitter (X) accounts of 20 retail banks in the USA, selected from the Top 100 banks on Twitter, over the period of 2012–2022, focusing on consumer reactions to posts. By analysing 136,150 tweets, the study aims to explore how banks utilize Twitter, and examine the effects of the visual and textual elements used in their posts on consumers.</div></div><div><h3>Design/methodology/approach</h3><div><strong>–</strong> Text and image analysis of the Twitter accounts available to the public was performed using different natural language processing methods (topic analysis, sentiment analysis), computer vision techniques (object detection, optical character recognition, image captioning), and statistical and machine learning models (linear and logistic regression, Catboost). The research investigates how certain brand identity elements (e.g. words, colours, visual elements, symbols) in retail banks' Twitter posts trigger consumer reactions (likes).</div></div><div><h3>Findings</h3><div><strong>–</strong> We found that although some factors statistically significantly increase the popularity of a post, there is no well-identified, general brand identity element that has a commercially relevant impact on consumer responses, i.e., the popularity of a post.</div></div><div><h3>Originality/value</h3><div>The study sheds new light on the effectiveness of social media tactical tools and strategies in the banking sector, which are common knowledge in the general marketing practice, focusing on popular posting activities.</div></div>","PeriodicalId":16678,"journal":{"name":"Journal of Open Innovation: Technology, Market, and Complexity","volume":"11 2","pages":"Article 100512"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Innovation: Technology, Market, and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2199853125000472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

The research examines the Twitter (X) accounts of 20 retail banks in the USA, selected from the Top 100 banks on Twitter, over the period of 2012–2022, focusing on consumer reactions to posts. By analysing 136,150 tweets, the study aims to explore how banks utilize Twitter, and examine the effects of the visual and textual elements used in their posts on consumers.

Design/methodology/approach

Text and image analysis of the Twitter accounts available to the public was performed using different natural language processing methods (topic analysis, sentiment analysis), computer vision techniques (object detection, optical character recognition, image captioning), and statistical and machine learning models (linear and logistic regression, Catboost). The research investigates how certain brand identity elements (e.g. words, colours, visual elements, symbols) in retail banks' Twitter posts trigger consumer reactions (likes).

Findings

We found that although some factors statistically significantly increase the popularity of a post, there is no well-identified, general brand identity element that has a commercially relevant impact on consumer responses, i.e., the popularity of a post.

Originality/value

The study sheds new light on the effectiveness of social media tactical tools and strategies in the banking sector, which are common knowledge in the general marketing practice, focusing on popular posting activities.
用机器学习调查银行的社交媒体内容和消费者的反应
本研究考察了美国20家零售银行的Twitter (X)账户,这些银行是从Twitter上排名前100的银行中挑选出来的,在2012-2022年期间,重点关注消费者对帖子的反应。通过分析136,150条推文,该研究旨在探讨银行如何利用Twitter,并检查其帖子中使用的视觉和文本元素对消费者的影响。设计/方法/方法-使用不同的自然语言处理方法(主题分析,情感分析),计算机视觉技术(对象检测,光学字符识别,图像字幕)以及统计和机器学习模型(线性和逻辑回归,Catboost)对公众可用的Twitter帐户进行文本和图像分析。该研究调查了零售银行Twitter帖子中的某些品牌标识元素(如文字、颜色、视觉元素、符号)如何引发消费者的反应(点赞)。研究结果-我们发现,虽然一些因素在统计上显著增加了帖子的受欢迎程度,但没有一个明确的、通用的品牌标识元素对消费者的反应有商业相关的影响,即帖子的受欢迎程度。独创性/价值该研究揭示了社交媒体战术工具和策略在银行业的有效性,这是一般营销实践中的常识,重点关注流行的发布活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Open Innovation: Technology, Market, and Complexity
Journal of Open Innovation: Technology, Market, and Complexity Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
11.00
自引率
0.00%
发文量
196
审稿时长
1 day
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信