Dispersion model for level control of bubbling fluidized beds with particle cross-flow

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Stefan Thanheiser , Markus Haider
{"title":"Dispersion model for level control of bubbling fluidized beds with particle cross-flow","authors":"Stefan Thanheiser ,&nbsp;Markus Haider","doi":"10.1016/j.cherd.2025.02.038","DOIUrl":null,"url":null,"abstract":"<div><div>A fluidized bed with a large, continuous horizontal flow of particles (cross-flow) can lead to a sloped bed level, leaving a heat exchanger immersed in the fluidized bed covered by different amounts of particles. This facilitates particles bypassing the heat exchanger, thereby reducing its efficiency. Pressurized zones can be utilized to control the bed level along the particles' horizontal path, achieving a more even distribution of particles across the heat exchanger. Designing this level control system requires a physical model of the particle flow that accounts for the impact of pressurized zones, for which a new particle dispersion model was developed in this study. Dynamic simulations and experiments on a test rig were used to calibrate and validate the new particle dispersion model. The model was able to correctly predict the dynamic behavior of bed levels influenced by pressurized zones within a few millimeters. This model can be used to design and analyze a fluidized bed level control system. Further research on additional influencing factors of particle dispersion, in particular the heat exchanger's configuration, is still required to achieve general applicability of the new particle dispersion model.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"216 ","pages":"Pages 427-440"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876225001029","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A fluidized bed with a large, continuous horizontal flow of particles (cross-flow) can lead to a sloped bed level, leaving a heat exchanger immersed in the fluidized bed covered by different amounts of particles. This facilitates particles bypassing the heat exchanger, thereby reducing its efficiency. Pressurized zones can be utilized to control the bed level along the particles' horizontal path, achieving a more even distribution of particles across the heat exchanger. Designing this level control system requires a physical model of the particle flow that accounts for the impact of pressurized zones, for which a new particle dispersion model was developed in this study. Dynamic simulations and experiments on a test rig were used to calibrate and validate the new particle dispersion model. The model was able to correctly predict the dynamic behavior of bed levels influenced by pressurized zones within a few millimeters. This model can be used to design and analyze a fluidized bed level control system. Further research on additional influencing factors of particle dispersion, in particular the heat exchanger's configuration, is still required to achieve general applicability of the new particle dispersion model.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信