FGFR3 signaling is essential for gastric cancer cell triggering the transition of BM-MSCs into tumor-associated MSCs

IF 2.2 3区 生物学 Q4 CELL BIOLOGY
Xiang Wang , Xiaoli Cao , Baocheng Zhou , Jingyu Mei , Yuanyuan Li , Xinlan Zhao , Wei Zhu , Feng Huang , Li Sun , Mei Wang
{"title":"FGFR3 signaling is essential for gastric cancer cell triggering the transition of BM-MSCs into tumor-associated MSCs","authors":"Xiang Wang ,&nbsp;Xiaoli Cao ,&nbsp;Baocheng Zhou ,&nbsp;Jingyu Mei ,&nbsp;Yuanyuan Li ,&nbsp;Xinlan Zhao ,&nbsp;Wei Zhu ,&nbsp;Feng Huang ,&nbsp;Li Sun ,&nbsp;Mei Wang","doi":"10.1016/j.diff.2025.100859","DOIUrl":null,"url":null,"abstract":"<div><div>Bone marrow-derived mesenchymal stem cells (BM-MSCs) tend to migrate towards tumor sites and interact with tumor cells, thus incorporating into tumor microenvironment by transition into various stromal cells, particularly tumor-associated MSCs. However, the mechanisms involved in this process is still not clarified. Herein, we focused on miR-99a-5p and confirmed its reduction in gastric cancer-associated MSCs (GC-MSCs) compared to BM-MSCs. Under-expression of miR-99a-5p stimulated BM-MSCs transition into GC-MSCs-like cells, while overexpression of this miRNA abrogated tumor-promoting roles of GC-MSCs. miR-99a-5p not only targeted modulation of fibroblast growth factor receptor (FGFR3) but also negatively affected its phosphorylated levels. Suppression of FGFR3 signaling by AZD4547 or siRNA against FGFR3 notably blocked the miR-99a-5p inhibitor-induced BM-MSCs transition and the oncogenic roles of GC-MSCs. However, miR-99a-5p overexpression did not diminish the ability of gastric cancer cells to educate BM-MSCs. The levels of phosphorylated FGFR3, but not total FGFR3, was increased in BM-MSCs educated by gastric cancer cells. AZD4547 significantly suppressed the education capacity of gastric cancer cells on BM-MSCs. Taken together, although manipulating miR-99a-5p to mimic its levels in GC-MSCs promotes the transition of BM-MSCs into GC-MSCs-like cells, FGFR3 signaling, rather than miR-99a-5p, is unexpectedly essential for the education of BM-MSCs by gastric cancer cells. This discovery provides a novel mechanism underlying the transition of BM-MSCs into tumor-associated MSCs and identifies potential therapeutic targets for gastric cancer.</div></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":"143 ","pages":"Article 100859"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030146812500026X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bone marrow-derived mesenchymal stem cells (BM-MSCs) tend to migrate towards tumor sites and interact with tumor cells, thus incorporating into tumor microenvironment by transition into various stromal cells, particularly tumor-associated MSCs. However, the mechanisms involved in this process is still not clarified. Herein, we focused on miR-99a-5p and confirmed its reduction in gastric cancer-associated MSCs (GC-MSCs) compared to BM-MSCs. Under-expression of miR-99a-5p stimulated BM-MSCs transition into GC-MSCs-like cells, while overexpression of this miRNA abrogated tumor-promoting roles of GC-MSCs. miR-99a-5p not only targeted modulation of fibroblast growth factor receptor (FGFR3) but also negatively affected its phosphorylated levels. Suppression of FGFR3 signaling by AZD4547 or siRNA against FGFR3 notably blocked the miR-99a-5p inhibitor-induced BM-MSCs transition and the oncogenic roles of GC-MSCs. However, miR-99a-5p overexpression did not diminish the ability of gastric cancer cells to educate BM-MSCs. The levels of phosphorylated FGFR3, but not total FGFR3, was increased in BM-MSCs educated by gastric cancer cells. AZD4547 significantly suppressed the education capacity of gastric cancer cells on BM-MSCs. Taken together, although manipulating miR-99a-5p to mimic its levels in GC-MSCs promotes the transition of BM-MSCs into GC-MSCs-like cells, FGFR3 signaling, rather than miR-99a-5p, is unexpectedly essential for the education of BM-MSCs by gastric cancer cells. This discovery provides a novel mechanism underlying the transition of BM-MSCs into tumor-associated MSCs and identifies potential therapeutic targets for gastric cancer.
FGFR3信号对于胃癌细胞触发BM-MSCs向肿瘤相关MSCs的转变至关重要
骨髓源间充质干细胞(BM-MSCs)倾向于向肿瘤部位迁移并与肿瘤细胞相互作用,从而通过转化为各种基质细胞,特别是肿瘤相关的MSCs,融入肿瘤微环境。然而,这一过程所涉及的机制仍不清楚。在这里,我们重点关注miR-99a-5p,并证实其在胃癌相关MSCs (GC-MSCs)中的减少与BM-MSCs相比。miR-99a-5p的低表达刺激了BM-MSCs向GC-MSCs样细胞的转变,而该miRNA的过表达则取消了GC-MSCs的促肿瘤作用。miR-99a-5p不仅靶向调节成纤维细胞生长因子受体(FGFR3),而且还对其磷酸化水平产生负面影响。AZD4547或siRNA对FGFR3信号的抑制明显阻断了miR-99a-5p抑制剂诱导的BM-MSCs转化和GC-MSCs的致癌作用。然而,miR-99a-5p过表达并未降低胃癌细胞培养BM-MSCs的能力。在胃癌细胞培养的BM-MSCs中,磷酸化的FGFR3水平升高,而不是总FGFR3水平升高。AZD4547显著抑制胃癌细胞对BM-MSCs的教育能力。综上所述,尽管操纵miR-99a-5p以模仿其在GC-MSCs中的水平促进了BM-MSCs向GC-MSCs样细胞的转变,但FGFR3信号传导,而不是miR-99a-5p,对于胃癌细胞对BM-MSCs的教育出乎意料地至关重要。这一发现提供了BM-MSCs向肿瘤相关MSCs转变的新机制,并确定了胃癌的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Differentiation
Differentiation 生物-发育生物学
CiteScore
4.10
自引率
3.40%
发文量
38
审稿时长
51 days
期刊介绍: Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal. The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest. The principal subject areas the journal covers are: • embryonic patterning and organogenesis • human development and congenital malformation • mechanisms of cell lineage commitment • tissue homeostasis and oncogenic transformation • establishment of cellular polarity • stem cell differentiation • cell reprogramming mechanisms • stability of the differentiated state • cell and tissue interactions in vivo and in vitro • signal transduction pathways in development and differentiation • carcinogenesis and cancer • mechanisms involved in cell growth and division especially relating to cancer • differentiation in regeneration and ageing • therapeutic applications of differentiation processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信