Flocculation Mechanisms in Brettanomyces bruxellensis: Influence of ethanol and sulfur dioxide on FLO gene expression

IF 4.8 Q1 MICROBIOLOGY
Alessandra Di Canito, Roberto Foschino, Ileana Vigentini
{"title":"Flocculation Mechanisms in Brettanomyces bruxellensis: Influence of ethanol and sulfur dioxide on FLO gene expression","authors":"Alessandra Di Canito,&nbsp;Roberto Foschino,&nbsp;Ileana Vigentini","doi":"10.1016/j.crmicr.2025.100372","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanisms underlying flocculation in <em>Brettanomyces bruxellensis</em>, unlike the well-characterized <em>FLO</em>-family gene regulation in <em>Saccharomyces cerevisiae</em>, remain largely unexplored. This study investigates the flocculant phenotypes of 99 <em>B. bruxellensis</em> strains, revealing that only a minority exhibits this clumping behavior and confirms its strain-dependent attitude. Focusing on two strains, CBS2499 (flocculant) and UMY321 (non-flocculant), genetic analysis uncovered polymorphisms and distinct allelic heterozygosity in the <em>FLO1</em> and <em>FLO11</em> genes, potentially linked to the phenotypic differences. To further examine these traits, Response Surface Methodology (RSM) was used to simulate oenological conditions, testing the impact of pH, ethanol, and sulfur dioxide (SO₂) levels on flocculation and gene expression. The findings revealed that environmental stressors, especially ethanol and SO₂, significantly increase the expression of <em>FLO1</em> and <em>FLO11</em> in CBS2499, indicating a regulatory role in flocculation under stress. These insights broaden our understanding of stress adaptation in <em>B. bruxellensis</em>, especially its survival strategies in wine environments. By elucidating factors influencing flocculation, this study contributes valuable knowledge for managing <em>B. bruxellensis</em> spoilage, potentially aiding in the development of targeted approaches to reduce its impact on wine quality.</div></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":"8 ","pages":"Article 100372"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666517425000343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanisms underlying flocculation in Brettanomyces bruxellensis, unlike the well-characterized FLO-family gene regulation in Saccharomyces cerevisiae, remain largely unexplored. This study investigates the flocculant phenotypes of 99 B. bruxellensis strains, revealing that only a minority exhibits this clumping behavior and confirms its strain-dependent attitude. Focusing on two strains, CBS2499 (flocculant) and UMY321 (non-flocculant), genetic analysis uncovered polymorphisms and distinct allelic heterozygosity in the FLO1 and FLO11 genes, potentially linked to the phenotypic differences. To further examine these traits, Response Surface Methodology (RSM) was used to simulate oenological conditions, testing the impact of pH, ethanol, and sulfur dioxide (SO₂) levels on flocculation and gene expression. The findings revealed that environmental stressors, especially ethanol and SO₂, significantly increase the expression of FLO1 and FLO11 in CBS2499, indicating a regulatory role in flocculation under stress. These insights broaden our understanding of stress adaptation in B. bruxellensis, especially its survival strategies in wine environments. By elucidating factors influencing flocculation, this study contributes valuable knowledge for managing B. bruxellensis spoilage, potentially aiding in the development of targeted approaches to reduce its impact on wine quality.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Microbial Sciences
Current Research in Microbial Sciences Immunology and Microbiology-Immunology and Microbiology (miscellaneous)
CiteScore
7.90
自引率
0.00%
发文量
81
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信