Atomistic insights into the carbonation behavior of olivine minerals: Role of metal cation composition

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Saisai Zhang, Xinyu Zhang, Li Zhang, Donglin Li, Xuemao Guan, Jianping Zhu, Songhui Liu
{"title":"Atomistic insights into the carbonation behavior of olivine minerals: Role of metal cation composition","authors":"Saisai Zhang,&nbsp;Xinyu Zhang,&nbsp;Li Zhang,&nbsp;Donglin Li,&nbsp;Xuemao Guan,&nbsp;Jianping Zhu,&nbsp;Songhui Liu","doi":"10.1016/j.ssi.2025.116845","DOIUrl":null,"url":null,"abstract":"<div><div>Olivine minerals possess significant potential for CO<sub>2</sub> sequestration through carbonation reactions, with their reactivity highly influenced by cation composition. This study employs first-principles calculations to systematically investigate the impact of metal cations (Mg<sup>2+</sup>, Ca<sup>2+</sup>, Mn<sup>2+</sup>, Fe<sup>2+</sup>, Co<sup>2+</sup>) on the carbonation behavior of five olivine structures: forsterite (Mg<sub>2</sub>SiO<sub>4</sub>), calcio-olivine (γ-Ca<sub>2</sub>SiO<sub>4</sub>), tephroite (α-Mn<sub>2</sub>SiO<sub>4</sub>), fayalite (α-Fe<sub>2</sub>SiO<sub>4</sub>), and Co-olivine. Analyses of bond characteristics, total bond order density, and local density of states reveal fundamental differences between alkaline earth and transition metal olivines. We have found that in alkaline earth (AE) olivines, carbonation primarily involves an electrophilic attack of O<sup>2−</sup> by H<sup>+</sup> and a nucleophilic attack of metal cations by HCO<sub>3</sub><sup>−</sup>/CO<sub>3</sub><sup>2−</sup> species. Calcio-olivine exhibits higher reactivity than forsterite due to enhanced Ca<sup>2+</sup> nucleophilicity. Conversely, transition metal (TM) olivine reactivity is governed by the multivalent cations, contributing significantly to both electrophilic and nucleophilic pathways. Considering both mineral reserves and carbonation reaction mechanisms, calcio-olivine is determined to be the most advantageous among the five olivine minerals in terms of carbonation reactivity. This atomic-scale understanding guides the development of olivine-based materials with improved carbonation performance for efficient CO<sub>2</sub> sequestration and utilization in carbon capture, utilization, and storage technologies.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"423 ","pages":"Article 116845"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000645","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Olivine minerals possess significant potential for CO2 sequestration through carbonation reactions, with their reactivity highly influenced by cation composition. This study employs first-principles calculations to systematically investigate the impact of metal cations (Mg2+, Ca2+, Mn2+, Fe2+, Co2+) on the carbonation behavior of five olivine structures: forsterite (Mg2SiO4), calcio-olivine (γ-Ca2SiO4), tephroite (α-Mn2SiO4), fayalite (α-Fe2SiO4), and Co-olivine. Analyses of bond characteristics, total bond order density, and local density of states reveal fundamental differences between alkaline earth and transition metal olivines. We have found that in alkaline earth (AE) olivines, carbonation primarily involves an electrophilic attack of O2− by H+ and a nucleophilic attack of metal cations by HCO3/CO32− species. Calcio-olivine exhibits higher reactivity than forsterite due to enhanced Ca2+ nucleophilicity. Conversely, transition metal (TM) olivine reactivity is governed by the multivalent cations, contributing significantly to both electrophilic and nucleophilic pathways. Considering both mineral reserves and carbonation reaction mechanisms, calcio-olivine is determined to be the most advantageous among the five olivine minerals in terms of carbonation reactivity. This atomic-scale understanding guides the development of olivine-based materials with improved carbonation performance for efficient CO2 sequestration and utilization in carbon capture, utilization, and storage technologies.
橄榄石矿物碳酸化行为的原子见解:金属阳离子组成的作用
橄榄石矿物具有通过碳酸化反应封存CO2的巨大潜力,其反应活性受到阳离子组成的高度影响。本研究采用第一性原理计算,系统研究了金属阳离子(Mg2+, Ca2+, Mn2+, Fe2+, Co2+)对五种橄榄石结构:橄榄石(Mg2SiO4),钙橄榄石(γ-Ca2SiO4),铁辉石(α-Mn2SiO4),铁辉石(α-Fe2SiO4)和co -橄榄石的碳化行为的影响。对碱土橄榄石和过渡金属橄榄石的键特性、总键序密度和局部态密度的分析揭示了它们之间的根本差异。我们发现,在碱土橄榄石(AE)中,碳酸化主要涉及H+对O2−的亲电攻击和HCO3−/CO32−种对金属阳离子的亲核攻击。钙橄榄石表现出比橄榄石更高的反应活性,这是由于钙橄榄石的亲核性增强。相反,过渡金属(TM)橄榄石的反应性由多价阳离子控制,对亲电和亲核途径都有重要贡献。综合考虑矿物储量和碳酸化反应机理,认为钙橄榄石是5种橄榄石矿物中碳酸化反应活性最优的一种。这种原子尺度的理解指导了橄榄石基材料的发展,这些材料具有更好的碳化性能,可以在碳捕获、利用和储存技术中有效地封存和利用二氧化碳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信