Enhanced salt tolerance in Synechocystis sp. PCC 6803 through adaptive evolution: Mechanisms and applications for environmental bioremediation

IF 6.1 1区 生物学 Q1 MICROBIOLOGY
Xiaofei Zhu , Rongsong Zou , Dailin Liu , Jing Liu , Xuejing Wu , Jingjing Jiang , Lijin Tian , Lei Chen , Tao Sun , Weiwen Zhang
{"title":"Enhanced salt tolerance in Synechocystis sp. PCC 6803 through adaptive evolution: Mechanisms and applications for environmental bioremediation","authors":"Xiaofei Zhu ,&nbsp;Rongsong Zou ,&nbsp;Dailin Liu ,&nbsp;Jing Liu ,&nbsp;Xuejing Wu ,&nbsp;Jingjing Jiang ,&nbsp;Lijin Tian ,&nbsp;Lei Chen ,&nbsp;Tao Sun ,&nbsp;Weiwen Zhang","doi":"10.1016/j.micres.2025.128140","DOIUrl":null,"url":null,"abstract":"<div><div>As a significant environmental challenge, salt stress is common in saline-alkali soils and brackish water, where elevated salt levels hinder the growth of various organisms. Cyanobacteria are ideal models for studying adaptations to salt stress due to their wide distribution across aquatic and terrestrial ecosystems. In this study, we employed adaptive laboratory evolution to increase the salt (NaCl) tolerance of the model cyanobacterium <em>Synechocystis</em> sp. PCC 6803 from 4.0 % to 6.5 % (w/v). Through genome re-sequencing and mutant analysis, six key genes associated with salt tolerance were identified. Notably, overexpression of the <em>slr1753</em> gene enhanced Na⁺ accumulation on the cell surface, enabling the engineered strain to effectively reduce Na⁺ concentration in seawater by 6.4 %. Additionally, the adapted strain showed promise in remediating saline-alkali soils, with observed increases in the germination rate (184.2 %) and average height (43.8 %) of <em>Brassica rapa chinensis</em>. Soil quality also improved, with a 25.3 % increase in total organic carbon content, a 1.8 % reduction in total salt content, and a 1.9 % decrease in pH. This study provides new insights into the mechanisms underlying salt tolerance and highlights the potential of engineered cyanobacteria for bioremediation in high-salinity environments.</div></div>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"296 ","pages":"Article 128140"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944501325000965","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As a significant environmental challenge, salt stress is common in saline-alkali soils and brackish water, where elevated salt levels hinder the growth of various organisms. Cyanobacteria are ideal models for studying adaptations to salt stress due to their wide distribution across aquatic and terrestrial ecosystems. In this study, we employed adaptive laboratory evolution to increase the salt (NaCl) tolerance of the model cyanobacterium Synechocystis sp. PCC 6803 from 4.0 % to 6.5 % (w/v). Through genome re-sequencing and mutant analysis, six key genes associated with salt tolerance were identified. Notably, overexpression of the slr1753 gene enhanced Na⁺ accumulation on the cell surface, enabling the engineered strain to effectively reduce Na⁺ concentration in seawater by 6.4 %. Additionally, the adapted strain showed promise in remediating saline-alkali soils, with observed increases in the germination rate (184.2 %) and average height (43.8 %) of Brassica rapa chinensis. Soil quality also improved, with a 25.3 % increase in total organic carbon content, a 1.8 % reduction in total salt content, and a 1.9 % decrease in pH. This study provides new insights into the mechanisms underlying salt tolerance and highlights the potential of engineered cyanobacteria for bioremediation in high-salinity environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiological research
Microbiological research 生物-微生物学
CiteScore
10.90
自引率
6.00%
发文量
249
审稿时长
29 days
期刊介绍: Microbiological Research is devoted to publishing reports on prokaryotic and eukaryotic microorganisms such as yeasts, fungi, bacteria, archaea, and protozoa. Research on interactions between pathogenic microorganisms and their environment or hosts are also covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信