Optimization of ultrasonic-assisted extraction (UAE) for phenolics and antioxidant activity from cocoa (Theobroma cacao) leaves and phytochemical profiling using GC-MS and LC-HRMS
Yusuf Andriana , Muhammad Fatih Abdurrahman , Pepita Haryanti , Ratih Pangestuti , Dedy Kurnianto , Ardiba Rakhmi Sefrienda , Erni Apriyati , Jerry Wungkana , Ashri Indriati , Christina Litaay
{"title":"Optimization of ultrasonic-assisted extraction (UAE) for phenolics and antioxidant activity from cocoa (Theobroma cacao) leaves and phytochemical profiling using GC-MS and LC-HRMS","authors":"Yusuf Andriana , Muhammad Fatih Abdurrahman , Pepita Haryanti , Ratih Pangestuti , Dedy Kurnianto , Ardiba Rakhmi Sefrienda , Erni Apriyati , Jerry Wungkana , Ashri Indriati , Christina Litaay","doi":"10.1016/j.bcab.2025.103557","DOIUrl":null,"url":null,"abstract":"<div><div>Cocoa (<em>Theobroma cacao</em>) leaves, often discarded as agricultural by-products, are a valuable source of phenolic compounds with strong antioxidant properties. This study aims to optimize the ultrasound-assisted extraction (UAE) process to maximize the total phenolic content (TPC) and antioxidant activity (AA) of cocoa leaves using response surface methodology (RSM) with a central composite design (CCD). Three variables—ethanol concentration (70–90%), ultrasonic irradiation time (30–60 min), and solvent-to-solid ratio (5–15 mL/g)—were evaluated for their effects on TPC and AA. The RSM quadratic model determined the optimum extraction conditions as 89.34% ethanol, 45.87 min ultrasonic irradiation, and 10.03 mL/g solvent-to-solid ratio, with predicting TPC and AA values of 129.67 mg GAE/g extract and 44.52 %, respectively. Experimental validation yielded TPC of 118.84 ± 0.83 mg GAE/g and antioxidant activity of 42.01 ± 1.14 %, aligning with predictions within a 5% error margin. Furthermore, GC-MS and LC-HRMS analyses identified key phenolics, including (+)-procyanidin B2, (−)-epicatechin, and D-(+)-catechin, alongside other compounds such as squalene. The findings demonstrate that UAE was a highly efficient method for extracting bioactive compounds from cocoa leaves, facilitating the repurposing of agricultural by-products and potentially enhancing the functional value of cocoa leaf-derived products.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"65 ","pages":"Article 103557"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818125000702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cocoa (Theobroma cacao) leaves, often discarded as agricultural by-products, are a valuable source of phenolic compounds with strong antioxidant properties. This study aims to optimize the ultrasound-assisted extraction (UAE) process to maximize the total phenolic content (TPC) and antioxidant activity (AA) of cocoa leaves using response surface methodology (RSM) with a central composite design (CCD). Three variables—ethanol concentration (70–90%), ultrasonic irradiation time (30–60 min), and solvent-to-solid ratio (5–15 mL/g)—were evaluated for their effects on TPC and AA. The RSM quadratic model determined the optimum extraction conditions as 89.34% ethanol, 45.87 min ultrasonic irradiation, and 10.03 mL/g solvent-to-solid ratio, with predicting TPC and AA values of 129.67 mg GAE/g extract and 44.52 %, respectively. Experimental validation yielded TPC of 118.84 ± 0.83 mg GAE/g and antioxidant activity of 42.01 ± 1.14 %, aligning with predictions within a 5% error margin. Furthermore, GC-MS and LC-HRMS analyses identified key phenolics, including (+)-procyanidin B2, (−)-epicatechin, and D-(+)-catechin, alongside other compounds such as squalene. The findings demonstrate that UAE was a highly efficient method for extracting bioactive compounds from cocoa leaves, facilitating the repurposing of agricultural by-products and potentially enhancing the functional value of cocoa leaf-derived products.
期刊介绍:
Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.