Comparison of physical, chemical, physico-chemical, and enzymatic pretreatment of paddy straw for ethanol production

Sudarshan Sahu , Urbi Bansal , Gursharan Singh , Shailendra Kumar Arya
{"title":"Comparison of physical, chemical, physico-chemical, and enzymatic pretreatment of paddy straw for ethanol production","authors":"Sudarshan Sahu ,&nbsp;Urbi Bansal ,&nbsp;Gursharan Singh ,&nbsp;Shailendra Kumar Arya","doi":"10.1016/j.scenv.2025.100239","DOIUrl":null,"url":null,"abstract":"<div><div>The global shift towards renewable energy has heightened the importance of bioethanol as a sustainable alternative to fossil fuels, addressing environmental concerns and reducing greenhouse gas emissions. Sustainable chemistry offers innovative solutions for converting agricultural residues into valuable biofuels, yet challenges in optimizing pretreatment and enzymatic processes persist. This study addresses these gaps by systematically comparing physical, chemical, physicochemical, and enzymatic pretreatments to enhance ethanol yields from paddy straw. Methods included alkali, sonication, and alkali-assisted sonication treatments to modify substrate composition, followed by enzymatic hydrolysis using cellulase, xylanase, and mannanase. Results revealed that alkali-assisted sonication yielded the highest reducing sugar concentrations (30 ± 0.8 mg/mL) and ethanol productivity (0.41 g/L/h), with a saccharification percentage of 89 % and ethanol yield of 0.58 g/L. In contrast, xylanase exhibited a saccharification percentage of 83 % with an ethanol productivity of 0.28 g/L/h, while cellulase achieved 85 % saccharification and 0.35 g/L/h ethanol productivity. Mannanase showed the lowest performance with 79 % saccharification and 0.21 g/L/h ethanol productivity. A synergistic enzyme cocktail maximized substrate breakdown and sugar release. This research underscores the critical role of pretreatment and enzyme selection in advancing bioethanol production, offering a sustainable pathway to valorize agricultural waste into clean energy.</div></div>","PeriodicalId":101196,"journal":{"name":"Sustainable Chemistry for the Environment","volume":"10 ","pages":"Article 100239"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry for the Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949839225000343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The global shift towards renewable energy has heightened the importance of bioethanol as a sustainable alternative to fossil fuels, addressing environmental concerns and reducing greenhouse gas emissions. Sustainable chemistry offers innovative solutions for converting agricultural residues into valuable biofuels, yet challenges in optimizing pretreatment and enzymatic processes persist. This study addresses these gaps by systematically comparing physical, chemical, physicochemical, and enzymatic pretreatments to enhance ethanol yields from paddy straw. Methods included alkali, sonication, and alkali-assisted sonication treatments to modify substrate composition, followed by enzymatic hydrolysis using cellulase, xylanase, and mannanase. Results revealed that alkali-assisted sonication yielded the highest reducing sugar concentrations (30 ± 0.8 mg/mL) and ethanol productivity (0.41 g/L/h), with a saccharification percentage of 89 % and ethanol yield of 0.58 g/L. In contrast, xylanase exhibited a saccharification percentage of 83 % with an ethanol productivity of 0.28 g/L/h, while cellulase achieved 85 % saccharification and 0.35 g/L/h ethanol productivity. Mannanase showed the lowest performance with 79 % saccharification and 0.21 g/L/h ethanol productivity. A synergistic enzyme cocktail maximized substrate breakdown and sugar release. This research underscores the critical role of pretreatment and enzyme selection in advancing bioethanol production, offering a sustainable pathway to valorize agricultural waste into clean energy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信