Compressed chromatographic fingerprint of Artemisiae argyi Folium empowered by 1D-CNN: Reduce mobile phase consumption using chemometric algorithm

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Wennan Nie , Jiahe Qian , Cunhao Li , Shule Zhang , Wenlong Li
{"title":"Compressed chromatographic fingerprint of Artemisiae argyi Folium empowered by 1D-CNN: Reduce mobile phase consumption using chemometric algorithm","authors":"Wennan Nie ,&nbsp;Jiahe Qian ,&nbsp;Cunhao Li ,&nbsp;Shule Zhang ,&nbsp;Wenlong Li","doi":"10.1016/j.chroma.2025.465874","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>High-Performance Liquid Chromatography (HPLC) is widely used for its high sensitivity, stability, and accuracy. Nonetheless, it often involves lengthy analysis times and considerable solvent consumption, especially when dealing with complex systems and quality control, posing challenges to green and eco-friendly analytical practices.</div></div><div><h3>Objective</h3><div>This study proposes a compressed fingerprint chromatogram analysis technique that combines a one-dimensional convolutional neural network (1D-CNN) with HPLC, aiming to improve the analytical efficiency of various compounds in complex systems while reducing the use of organic solvents.</div></div><div><h3>Materials and Methods</h3><div>The natural product <em>Artemisiae argyi Folium</em> (AAF) was selected as the experimental subject. Firstly, HPLC fingerprints of AAF were developed based on conventional programs. Next, a compressed fingerprint was obtained without losing compound information. Finally, a 1D-CNN deep learning model was used to analyze and identify the compressed chromatograms, enabling quantitative analysis of 10 compounds in complex systems.</div></div><div><h3>Results</h3><div>The results indicate that the 1D-CNN model can effectively extract features from complex data, reducing the analysis time for each sample by about 40 min. In addition, the consumption of mobile phase has significantly decreased by 78 % compared to before. Among the ten compounds to be analyzed, nine of them achieved good results, with the highest correlation coefficient reaching above 0.95, indicating that the model has strong explanatory power.</div></div><div><h3>Conclusion</h3><div>The proposed compressed fingerprint chromatograms recognition technique enhances the environmental sustainability and efficiency of traditional HPLC methods, offering valuable insights for future advancements in analytical methodologies and equipment development.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1748 ","pages":"Article 465874"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967325002225","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

High-Performance Liquid Chromatography (HPLC) is widely used for its high sensitivity, stability, and accuracy. Nonetheless, it often involves lengthy analysis times and considerable solvent consumption, especially when dealing with complex systems and quality control, posing challenges to green and eco-friendly analytical practices.

Objective

This study proposes a compressed fingerprint chromatogram analysis technique that combines a one-dimensional convolutional neural network (1D-CNN) with HPLC, aiming to improve the analytical efficiency of various compounds in complex systems while reducing the use of organic solvents.

Materials and Methods

The natural product Artemisiae argyi Folium (AAF) was selected as the experimental subject. Firstly, HPLC fingerprints of AAF were developed based on conventional programs. Next, a compressed fingerprint was obtained without losing compound information. Finally, a 1D-CNN deep learning model was used to analyze and identify the compressed chromatograms, enabling quantitative analysis of 10 compounds in complex systems.

Results

The results indicate that the 1D-CNN model can effectively extract features from complex data, reducing the analysis time for each sample by about 40 min. In addition, the consumption of mobile phase has significantly decreased by 78 % compared to before. Among the ten compounds to be analyzed, nine of them achieved good results, with the highest correlation coefficient reaching above 0.95, indicating that the model has strong explanatory power.

Conclusion

The proposed compressed fingerprint chromatograms recognition technique enhances the environmental sustainability and efficiency of traditional HPLC methods, offering valuable insights for future advancements in analytical methodologies and equipment development.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chromatography A
Journal of Chromatography A 化学-分析化学
CiteScore
7.90
自引率
14.60%
发文量
742
审稿时长
45 days
期刊介绍: The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信