Integrating machine learning with agroecosystem modelling: Current state and future challenges

IF 4.5 1区 农林科学 Q1 AGRONOMY
Meshach Ojo Aderele , Amit Kumar Srivastava , Klaus Butterbach-Bahl , Jaber Rahimi
{"title":"Integrating machine learning with agroecosystem modelling: Current state and future challenges","authors":"Meshach Ojo Aderele ,&nbsp;Amit Kumar Srivastava ,&nbsp;Klaus Butterbach-Bahl ,&nbsp;Jaber Rahimi","doi":"10.1016/j.eja.2025.127610","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning (ML), especially deep learning (DL), is gaining popularity in the agroecosystem modelling community due to its ability to improve the efficiency of computationally intensive tasks. By reviewing previous modelling studies using the PRISMA technique, we present several examples of ML applications in this domain. The potential of using such models is highligthed. The different types of integration and model-building methods are categorized into process-based modelling (PBMs) and data-driven modelling (DDMs), which simulate different aspects of agroecosystem dynamics. While PBMs excel at capturing complex biophysical and biogeochemical processes, they are computationally intensive and may not always be solvable using analytical methods. To address these challenges, machine learning (ML) techniques, including deep learning (DL), are increasingly being integrated into agroecosystem modelling. This integration involves replacing PBMs with data-driven models, using hybrid models that combine PBMs and ML, or constructing simplified versions of PBMs through meta-modelling. ML-based meta-models offer computational efficiency and can capture intricate patterns and non-linear relationships in complex agricultural systems. However, challenges such as interpretability and data requirements remain. This review highlights the importance of addressing gaps and challenges to fully realize the potential of ML to identify the most promising ways of field management in promoting sustainable agricultural systems. It also highlights specific considerations such as data requirements, interpretability, model validation, and scalability for the successful integration of ML with PBMs in agriculture and the transformative potential of combining ML with PBMs, particularly in extending simulations from field to global scales and streamlining data collection processes through advanced sensor technologies based on their applications.</div></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":"168 ","pages":"Article 127610"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1161030125001066","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML), especially deep learning (DL), is gaining popularity in the agroecosystem modelling community due to its ability to improve the efficiency of computationally intensive tasks. By reviewing previous modelling studies using the PRISMA technique, we present several examples of ML applications in this domain. The potential of using such models is highligthed. The different types of integration and model-building methods are categorized into process-based modelling (PBMs) and data-driven modelling (DDMs), which simulate different aspects of agroecosystem dynamics. While PBMs excel at capturing complex biophysical and biogeochemical processes, they are computationally intensive and may not always be solvable using analytical methods. To address these challenges, machine learning (ML) techniques, including deep learning (DL), are increasingly being integrated into agroecosystem modelling. This integration involves replacing PBMs with data-driven models, using hybrid models that combine PBMs and ML, or constructing simplified versions of PBMs through meta-modelling. ML-based meta-models offer computational efficiency and can capture intricate patterns and non-linear relationships in complex agricultural systems. However, challenges such as interpretability and data requirements remain. This review highlights the importance of addressing gaps and challenges to fully realize the potential of ML to identify the most promising ways of field management in promoting sustainable agricultural systems. It also highlights specific considerations such as data requirements, interpretability, model validation, and scalability for the successful integration of ML with PBMs in agriculture and the transformative potential of combining ML with PBMs, particularly in extending simulations from field to global scales and streamlining data collection processes through advanced sensor technologies based on their applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Agronomy
European Journal of Agronomy 农林科学-农艺学
CiteScore
8.30
自引率
7.70%
发文量
187
审稿时长
4.5 months
期刊介绍: The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics: crop physiology crop production and management including irrigation, fertilization and soil management agroclimatology and modelling plant-soil relationships crop quality and post-harvest physiology farming and cropping systems agroecosystems and the environment crop-weed interactions and management organic farming horticultural crops papers from the European Society for Agronomy bi-annual meetings In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信