Improving the transferability of potato nitrogen concentration estimation models based on hybrid feature selection and Gaussian process regression

IF 4.5 1区 农林科学 Q1 AGRONOMY
Hang Yin , Haibo Yang , Yuncai Hu , Fei Li , Kang Yu
{"title":"Improving the transferability of potato nitrogen concentration estimation models based on hybrid feature selection and Gaussian process regression","authors":"Hang Yin ,&nbsp;Haibo Yang ,&nbsp;Yuncai Hu ,&nbsp;Fei Li ,&nbsp;Kang Yu","doi":"10.1016/j.eja.2025.127611","DOIUrl":null,"url":null,"abstract":"<div><div>Feature selection methods are widely used to improve the performance of plant nitrogen concentration (PNC) estimation models. However, the performance of individual feature selection methods can vary across different environments due to various uncertainties. This study aimed to propose a hybrid feature selection method to accurately identify the sensitive bands for the PNC estimation. Field experiments with different potato cultivars and N treatments were carried out in the Inner Mongolia during 2018, 2019, and 2021. The results showed that the hybrid feature selection method can effectively identify the sensitive bands for PNC. When combined with variational heteroscedastic Gaussian process regression (VHGPR), the hybrid method significantly improves the prediction accuracy of potato PNC. Validation using an independent dataset demonstrated that the hybrid feature selection method achieved the highest prediction accuracy compared to traditional feature selection methods, with the mean coefficient of determination (R²) increasing by 16.27 %. Additionally, the performance of VHGPR was benchmarked against partial least squares regression (PLSR). The results indicated that the VHGPR model outperforms the PLSR model across various data types, with a mean R² improvement of 8.92 %. In conclusion, combining the hybrid feature selection method with VHGPR can facilitate real-time PNC estimation in the field, thereby assisting farmers in accurately applying nitrogen fertilization strategies.</div></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":"168 ","pages":"Article 127611"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1161030125001078","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Feature selection methods are widely used to improve the performance of plant nitrogen concentration (PNC) estimation models. However, the performance of individual feature selection methods can vary across different environments due to various uncertainties. This study aimed to propose a hybrid feature selection method to accurately identify the sensitive bands for the PNC estimation. Field experiments with different potato cultivars and N treatments were carried out in the Inner Mongolia during 2018, 2019, and 2021. The results showed that the hybrid feature selection method can effectively identify the sensitive bands for PNC. When combined with variational heteroscedastic Gaussian process regression (VHGPR), the hybrid method significantly improves the prediction accuracy of potato PNC. Validation using an independent dataset demonstrated that the hybrid feature selection method achieved the highest prediction accuracy compared to traditional feature selection methods, with the mean coefficient of determination (R²) increasing by 16.27 %. Additionally, the performance of VHGPR was benchmarked against partial least squares regression (PLSR). The results indicated that the VHGPR model outperforms the PLSR model across various data types, with a mean R² improvement of 8.92 %. In conclusion, combining the hybrid feature selection method with VHGPR can facilitate real-time PNC estimation in the field, thereby assisting farmers in accurately applying nitrogen fertilization strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Agronomy
European Journal of Agronomy 农林科学-农艺学
CiteScore
8.30
自引率
7.70%
发文量
187
审稿时长
4.5 months
期刊介绍: The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics: crop physiology crop production and management including irrigation, fertilization and soil management agroclimatology and modelling plant-soil relationships crop quality and post-harvest physiology farming and cropping systems agroecosystems and the environment crop-weed interactions and management organic farming horticultural crops papers from the European Society for Agronomy bi-annual meetings In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信