Zihan Xia, Gan Luo, Lanmu-yi Gou, Wentao Zhang, Eke-gu Ji, Shenglin Li, Taichun Gao, Keha-mo Abi, Falong Yang
{"title":"Metaviromic and metagenomic study of the pathogens in unexplained pneumonia cases in goats","authors":"Zihan Xia, Gan Luo, Lanmu-yi Gou, Wentao Zhang, Eke-gu Ji, Shenglin Li, Taichun Gao, Keha-mo Abi, Falong Yang","doi":"10.1016/j.vetmic.2025.110469","DOIUrl":null,"url":null,"abstract":"<div><div>Goats are an economically important livestock species in China. However, the high mortality rate due to pneumonia represents a significant challenge to the development of intensive goat farms. 10 goat lung tissue samples were collected in this study, and all samples exhibited pneumonia of different severity as determined by lung lesion scoring and histopathological examination. Subsequently, this study employed qRT-PCR to measure the relative expression level of pro-inflammatory cytokines in lung tissue, and conducted metaviromic and metagenomic analyses to elucidate the structure and composition of the pulmonary microbiota, the correlation between the abundance of specific microbes and inflammatory factors, and between microbial abundance and the expression of virulence genes. Metaviromic results indicated that Ungulate tetraparvovirus 4 (83.3 %) had the highest relative abundance in the viral composition. Metagenomic data showed that <em>Mycoplasma</em> (28.2 %) and <em>Streptococcus</em> (24.8 %) are the primary dominant genus in goat pneumonia. Notably, a total of 8 pathogens associated with pneumonia in humans or animals were identified across all samples, including <em>Mycoplasma ovipneumoniae</em>, <em>Streptococcus agalactiae</em>, <em>Streptococcus pneumoniae</em>, <em>Escherichia coli, Bordetella hinzii</em>, <em>Bibersteinia trehalosi</em>, <em>Bordetella pertussis</em>, and <em>Pasteurella multocida</em>, with mixed infections with multiple pathogens are very common in this study. Correlation analysis indicates a significant association between the degree of pathogen co-infection and the severity of pulmonary lesions. Furthermore, <em>Pasteurella multocida</em> showed a significant positive correlation with the expression of IL-6 (<em>P<</em> 0.01). The pneumonia samples also revealed a multitude of virulence factors associated with bacterial pathogenicity including those related to biofilm formation, endotoxin production, bacterial invasion and evasion of host immunity. In conclusion, the present study can provide a reference for clinical pathogen diagnosis of unexplained pneumonia in goats.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"304 ","pages":"Article 110469"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037811352500104X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Goats are an economically important livestock species in China. However, the high mortality rate due to pneumonia represents a significant challenge to the development of intensive goat farms. 10 goat lung tissue samples were collected in this study, and all samples exhibited pneumonia of different severity as determined by lung lesion scoring and histopathological examination. Subsequently, this study employed qRT-PCR to measure the relative expression level of pro-inflammatory cytokines in lung tissue, and conducted metaviromic and metagenomic analyses to elucidate the structure and composition of the pulmonary microbiota, the correlation between the abundance of specific microbes and inflammatory factors, and between microbial abundance and the expression of virulence genes. Metaviromic results indicated that Ungulate tetraparvovirus 4 (83.3 %) had the highest relative abundance in the viral composition. Metagenomic data showed that Mycoplasma (28.2 %) and Streptococcus (24.8 %) are the primary dominant genus in goat pneumonia. Notably, a total of 8 pathogens associated with pneumonia in humans or animals were identified across all samples, including Mycoplasma ovipneumoniae, Streptococcus agalactiae, Streptococcus pneumoniae, Escherichia coli, Bordetella hinzii, Bibersteinia trehalosi, Bordetella pertussis, and Pasteurella multocida, with mixed infections with multiple pathogens are very common in this study. Correlation analysis indicates a significant association between the degree of pathogen co-infection and the severity of pulmonary lesions. Furthermore, Pasteurella multocida showed a significant positive correlation with the expression of IL-6 (P< 0.01). The pneumonia samples also revealed a multitude of virulence factors associated with bacterial pathogenicity including those related to biofilm formation, endotoxin production, bacterial invasion and evasion of host immunity. In conclusion, the present study can provide a reference for clinical pathogen diagnosis of unexplained pneumonia in goats.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.