Synergistic optimization analysis of droplet cleaning efficiency on photovoltaic surfaces through volume regulation and dust removal dynamic mechanism

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Chengtao Yan , Dong Zhang , Luyuan Gong , Denghui Zhao , Zhuorui Li
{"title":"Synergistic optimization analysis of droplet cleaning efficiency on photovoltaic surfaces through volume regulation and dust removal dynamic mechanism","authors":"Chengtao Yan ,&nbsp;Dong Zhang ,&nbsp;Luyuan Gong ,&nbsp;Denghui Zhao ,&nbsp;Zhuorui Li","doi":"10.1016/j.solmat.2025.113570","DOIUrl":null,"url":null,"abstract":"<div><div>Dust accumulation on photovoltaic (PV) modules can result in significant energy losses. While conventional cleaning methods require amounts of water, the application of droplets cleaning technology on superhydrophobic surfaces offers a more sustainable solution. Our study presents an investigation into the optimization of droplet cleaning efficiency on superhydrophobic PV glass by regulating droplet volume. The study explored the dynamics of droplet motion and critical dust carrying capacity, introduced a quantitative relationship between droplet volume and dust removal efficiency, systematically analyzed droplet dynamics and dust entrainment mechanism, and revealed three findings: (1) The dust carrying motion of the droplet exhibits two distinct motion stages, from accelerated linear motion to trailing state triggered by saturated dust capacity (4.8 mg, 5.9 mg, and 6.2 mg for 10, 30, 50 μL droplets). (2) Post trailing velocity declines sharply by 84.90 %, 53.66 %, and 41.81 % for 10, 30, 50 μL droplets. (3) A linear volume efficiency relationship is established, where 50 μL droplets achieve 28 % dust removal efficiency (14 mg capacity), with each 1 μL volume increment enhancing mass removal by 0.28 mg and efficiency by 6.25 %. Our research optimizes the self-cleaning technology of photovoltaic module. Research results are expected to further improve the cleaning efficiency and water saving advantages of the droplet cleaning method, which is essential for the sustainability of solar systems, especially in water-scarce regions.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"286 ","pages":"Article 113570"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825001710","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Dust accumulation on photovoltaic (PV) modules can result in significant energy losses. While conventional cleaning methods require amounts of water, the application of droplets cleaning technology on superhydrophobic surfaces offers a more sustainable solution. Our study presents an investigation into the optimization of droplet cleaning efficiency on superhydrophobic PV glass by regulating droplet volume. The study explored the dynamics of droplet motion and critical dust carrying capacity, introduced a quantitative relationship between droplet volume and dust removal efficiency, systematically analyzed droplet dynamics and dust entrainment mechanism, and revealed three findings: (1) The dust carrying motion of the droplet exhibits two distinct motion stages, from accelerated linear motion to trailing state triggered by saturated dust capacity (4.8 mg, 5.9 mg, and 6.2 mg for 10, 30, 50 μL droplets). (2) Post trailing velocity declines sharply by 84.90 %, 53.66 %, and 41.81 % for 10, 30, 50 μL droplets. (3) A linear volume efficiency relationship is established, where 50 μL droplets achieve 28 % dust removal efficiency (14 mg capacity), with each 1 μL volume increment enhancing mass removal by 0.28 mg and efficiency by 6.25 %. Our research optimizes the self-cleaning technology of photovoltaic module. Research results are expected to further improve the cleaning efficiency and water saving advantages of the droplet cleaning method, which is essential for the sustainability of solar systems, especially in water-scarce regions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信