Effect of pH and concentration on physicochemical, adsorption kinetics and rheology properties of quinoa protein: Functional correlations

Q3 Materials Science
José Fernando Solanilla-Duque, Diego Fernando Roa-Acosta, Jesús Eduardo Bravo-Gómez
{"title":"Effect of pH and concentration on physicochemical, adsorption kinetics and rheology properties of quinoa protein: Functional correlations","authors":"José Fernando Solanilla-Duque,&nbsp;Diego Fernando Roa-Acosta,&nbsp;Jesús Eduardo Bravo-Gómez","doi":"10.1016/j.jciso.2025.100131","DOIUrl":null,"url":null,"abstract":"<div><div>In the present manuscript protein isolates and hydrolysates have countless applications in the food industry due to their functional (solubility, emulsifying power, adsorption capacity, foaming capacity) and nutritional properties [1]. In the present manuscript, the interfacial, rheological, and functional properties of the quinoa protein isolate (QPI) at pH 5 and pH 7 were studied. Dilatational module behavior versus surface pressure was evaluated, using the Frumkin-Lucassen model for QPI, which showed a good fit in the first part of the curve (before achieving a plateau) evidencing the formation of the first interfacial layer. Moreover, the gel formation from QPI was evaluated at different concentrations (5, 10 and 15 % (w/w)). Rheological measurements indicated that higher protein concentrations at pH 5 resuts in a raise in the gel point temperature. It was also found that QPI showed better emulsifying and foaming capacity at pH 5 than at pH 7. An increase in the QPI concentration in the emulsion formulation produces greater thermal stability. The results obtained show the feasibility of using a quinoa protein isolate as an ingredient in functional foods (Modified (enriched or enhanced) foods, conventional foods, medicinal foods and foods for dietetic use.).</div></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"18 ","pages":"Article 100131"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCIS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666934X25000042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

In the present manuscript protein isolates and hydrolysates have countless applications in the food industry due to their functional (solubility, emulsifying power, adsorption capacity, foaming capacity) and nutritional properties [1]. In the present manuscript, the interfacial, rheological, and functional properties of the quinoa protein isolate (QPI) at pH 5 and pH 7 were studied. Dilatational module behavior versus surface pressure was evaluated, using the Frumkin-Lucassen model for QPI, which showed a good fit in the first part of the curve (before achieving a plateau) evidencing the formation of the first interfacial layer. Moreover, the gel formation from QPI was evaluated at different concentrations (5, 10 and 15 % (w/w)). Rheological measurements indicated that higher protein concentrations at pH 5 resuts in a raise in the gel point temperature. It was also found that QPI showed better emulsifying and foaming capacity at pH 5 than at pH 7. An increase in the QPI concentration in the emulsion formulation produces greater thermal stability. The results obtained show the feasibility of using a quinoa protein isolate as an ingredient in functional foods (Modified (enriched or enhanced) foods, conventional foods, medicinal foods and foods for dietetic use.).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
JCIS open
JCIS open Physical and Theoretical Chemistry, Colloid and Surface Chemistry, Surfaces, Coatings and Films
CiteScore
4.10
自引率
0.00%
发文量
0
审稿时长
36 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信