Microplastics in freshwater and marine ecosystems: Occurrence, characterization, sources, distribution dynamics, fate, transport processes, potential mitigation strategies, and policy interventions

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Toheeb Lekan Jolaosho , Mariam Folashade Rasaq , Eniola Victoria Omotoye , Oluwadamilola Victoria Araomo , Opeyemi Shakirat Adekoya , Opeyemi Yusuf Abolaji , Jesuyon Joseph Hungbo
{"title":"Microplastics in freshwater and marine ecosystems: Occurrence, characterization, sources, distribution dynamics, fate, transport processes, potential mitigation strategies, and policy interventions","authors":"Toheeb Lekan Jolaosho ,&nbsp;Mariam Folashade Rasaq ,&nbsp;Eniola Victoria Omotoye ,&nbsp;Oluwadamilola Victoria Araomo ,&nbsp;Opeyemi Shakirat Adekoya ,&nbsp;Opeyemi Yusuf Abolaji ,&nbsp;Jesuyon Joseph Hungbo","doi":"10.1016/j.ecoenv.2025.118036","DOIUrl":null,"url":null,"abstract":"<div><div>Most of the literature on microplastics (MPs) focuses on freshwater or terrestrial ecosystems, frequently overlooking their interconnections with the marine environments. This oversight is worrying given that both ecosystems serve as primary pathways for the introduction of MPs into marine environments. This review synthesizes existing literature on MPs in both freshwater and marine ecosystems across all six continents. The most commonly produced plastic polymers in industry are polyethylene (36 %) and polypropylene (21 %), and studies revealed that these two materials are the most abundant in aquatic ecosystems. Primary and secondary MPs originate from a range of sources including land-based disposal, the ocean, airborne deposition, wastewater treatment facilities, automobiles, pharmaceuticals and personal care products, synthetic textiles, and insect repellents. Notably, secondary MPs, which are formed from the breakdown of larger plastic items comprise approximately 69–81% of marine debris, especially in urbanized, densely populated areas. The inconsistencies of the methodologies (sampling, extraction, and quantification) and the units employed for result presentations are part of the major limitations in MPs research. Environmental phenomena such as heteroaggregation, weathering, adsorption, leaching, and fragmentation are the major factors influencing the behavior, fate, and degradation process of plastic particles. The physicochemical properties of plastic polymers, such as density, crystallinity, as well as bioturbation, meteorological forces, and wind actions, including currents, waves, and tides, are responsible for biofouling, aggregation, sinking into the bottom sediment, resuspension, and the vertical, horizontal, and spatiotemporal distributions and transport of MPs. The potential solutions to mitigate plastic pollution are grounded in the 3Rs framework, which includes reducing production and consumption, advancing the biotechnological, chemical and microbial development of degradable polymers, promoting reusable plastic products with lower environmental impacts over their lifetimes, and recycling waste into new products. The regulatory policies on single-use plastics commonly involve permanent bans and financial penalties for violators. In addition, nations such as the United States, the Netherlands, and northern Europe have introduced economic incentives to encourage the return of reusable materials to reduce plastic waste and the resulting envrionmental pollution.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"294 ","pages":"Article 118036"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325003720","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the literature on microplastics (MPs) focuses on freshwater or terrestrial ecosystems, frequently overlooking their interconnections with the marine environments. This oversight is worrying given that both ecosystems serve as primary pathways for the introduction of MPs into marine environments. This review synthesizes existing literature on MPs in both freshwater and marine ecosystems across all six continents. The most commonly produced plastic polymers in industry are polyethylene (36 %) and polypropylene (21 %), and studies revealed that these two materials are the most abundant in aquatic ecosystems. Primary and secondary MPs originate from a range of sources including land-based disposal, the ocean, airborne deposition, wastewater treatment facilities, automobiles, pharmaceuticals and personal care products, synthetic textiles, and insect repellents. Notably, secondary MPs, which are formed from the breakdown of larger plastic items comprise approximately 69–81% of marine debris, especially in urbanized, densely populated areas. The inconsistencies of the methodologies (sampling, extraction, and quantification) and the units employed for result presentations are part of the major limitations in MPs research. Environmental phenomena such as heteroaggregation, weathering, adsorption, leaching, and fragmentation are the major factors influencing the behavior, fate, and degradation process of plastic particles. The physicochemical properties of plastic polymers, such as density, crystallinity, as well as bioturbation, meteorological forces, and wind actions, including currents, waves, and tides, are responsible for biofouling, aggregation, sinking into the bottom sediment, resuspension, and the vertical, horizontal, and spatiotemporal distributions and transport of MPs. The potential solutions to mitigate plastic pollution are grounded in the 3Rs framework, which includes reducing production and consumption, advancing the biotechnological, chemical and microbial development of degradable polymers, promoting reusable plastic products with lower environmental impacts over their lifetimes, and recycling waste into new products. The regulatory policies on single-use plastics commonly involve permanent bans and financial penalties for violators. In addition, nations such as the United States, the Netherlands, and northern Europe have introduced economic incentives to encourage the return of reusable materials to reduce plastic waste and the resulting envrionmental pollution.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信