Beyond DNA interactions: Insights into idarubicin's binding dynamics with tRNA using spectroscopic and computational approaches

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sonika Charak , Chandra Mohan Srivastava , Dhruv Kumar , Lovika Mittal , Shailendra Asthana , Ranjana Mehrotra , Manish Shandilya
{"title":"Beyond DNA interactions: Insights into idarubicin's binding dynamics with tRNA using spectroscopic and computational approaches","authors":"Sonika Charak ,&nbsp;Chandra Mohan Srivastava ,&nbsp;Dhruv Kumar ,&nbsp;Lovika Mittal ,&nbsp;Shailendra Asthana ,&nbsp;Ranjana Mehrotra ,&nbsp;Manish Shandilya","doi":"10.1016/j.jphotobiol.2025.113147","DOIUrl":null,"url":null,"abstract":"<div><div>Idarubicin (4-demethoxydaunomycin), a structural analogue of daunomycin derived from <em>Streptomyces peucetius</em>, exhibits enhanced anticancer efficacy due to the substitution of a methoxy group with a hydrogen atom. This study investigates the binding interactions of idarubicin with RNA using a multifaceted approach, including infrared (IR) spectroscopy, absorption spectroscopy, circular dichroism (CD), molecular docking, and molecular dynamics (MD) simulations. The IR results demonstrate significant binding to guanine and uracil, indicated by spectral shifts, while MD simulations reveal additional interactions with adenine, highlighting a flexible binding mechanism. <strong>The binding constant of the idarubicin-RNA complex was calculated to be K = 2.1 × 10</strong><sup><strong>3</strong></sup> <strong>M</strong><sup><strong>−1</strong></sup><strong>, reflecting a strong affinity and stable interaction.</strong> Thermodynamic analysis shows that the negative Gibbs free energy (ΔG ∼ −4.57 kcal/mol) signifies spontaneous binding under physiological conditions. The binding free energy estimation was carried out to check the binding affinity, stability and interactions of the complex which was assessed through molecular dynamics simulations. The stability of the idarubicin-RNA complex is further supported by a hyperchromic effect observed in absorption spectroscopy, suggesting effective intercalation that enhances base exposure. The binding is driven by hydrogen bonding, π-π stacking interactions, and electrostatic forces, which collectively stabilize the complex. Notably, the conformational integrity of RNA is largely preserved, with key structural features remaining unchanged in both IR and CD analyses. Comparatively, idarubicin's interactions with RNA differ from those with DNA, where the latter shows more substantial conformational perturbations. These findings enhance our understanding of anthracycline functionality and provide valuable insights for developing novel analogues with improved efficacy and reduced side effects, informing future therapeutic strategies targeting RNA in cancer treatment.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"266 ","pages":"Article 113147"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1011134425000508","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Idarubicin (4-demethoxydaunomycin), a structural analogue of daunomycin derived from Streptomyces peucetius, exhibits enhanced anticancer efficacy due to the substitution of a methoxy group with a hydrogen atom. This study investigates the binding interactions of idarubicin with RNA using a multifaceted approach, including infrared (IR) spectroscopy, absorption spectroscopy, circular dichroism (CD), molecular docking, and molecular dynamics (MD) simulations. The IR results demonstrate significant binding to guanine and uracil, indicated by spectral shifts, while MD simulations reveal additional interactions with adenine, highlighting a flexible binding mechanism. The binding constant of the idarubicin-RNA complex was calculated to be K = 2.1 × 103 M−1, reflecting a strong affinity and stable interaction. Thermodynamic analysis shows that the negative Gibbs free energy (ΔG ∼ −4.57 kcal/mol) signifies spontaneous binding under physiological conditions. The binding free energy estimation was carried out to check the binding affinity, stability and interactions of the complex which was assessed through molecular dynamics simulations. The stability of the idarubicin-RNA complex is further supported by a hyperchromic effect observed in absorption spectroscopy, suggesting effective intercalation that enhances base exposure. The binding is driven by hydrogen bonding, π-π stacking interactions, and electrostatic forces, which collectively stabilize the complex. Notably, the conformational integrity of RNA is largely preserved, with key structural features remaining unchanged in both IR and CD analyses. Comparatively, idarubicin's interactions with RNA differ from those with DNA, where the latter shows more substantial conformational perturbations. These findings enhance our understanding of anthracycline functionality and provide valuable insights for developing novel analogues with improved efficacy and reduced side effects, informing future therapeutic strategies targeting RNA in cancer treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
1.90%
发文量
161
审稿时长
37 days
期刊介绍: The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field. The scope includes: - Bioluminescence - Chronobiology - DNA repair - Environmental photobiology - Nanotechnology in photobiology - Photocarcinogenesis - Photochemistry of biomolecules - Photodynamic therapy - Photomedicine - Photomorphogenesis - Photomovement - Photoreception - Photosensitization - Photosynthesis - Phototechnology - Spectroscopy of biological systems - UV and visible radiation effects and vision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信