Acoustic emission with simulation of simultaneous ultrasonic guided wave propagation & crack propagation

IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS
Fahim Md Mushfiqur Rahman, Sourav Banerjee
{"title":"Acoustic emission with simulation of simultaneous ultrasonic guided wave propagation & crack propagation","authors":"Fahim Md Mushfiqur Rahman,&nbsp;Sourav Banerjee","doi":"10.1016/j.ultras.2025.107637","DOIUrl":null,"url":null,"abstract":"<div><div>Advancement of computation nondestructive evaluation (CNDE) creates an opportunity to visualize predicted signals received by sensors and may aid the development of artificial intelligence (AI) for NDE 4.0. However, traditional methods face limitations for crack propagation and guided wave propagation simulation, <em>simultaneously.</em> Modeling crack propagation using mesh-based method requires remeshing and implementation of cohesive zone model to name a few alternatives. Multiple meshfree methods have also been implemented for crack propagation but did not immediately translate to simulate the guided waves that are used to interrogate the cracks under nondestructive evaluation (NDE) framework. Ultrasonic CNDE with new era of Machine Learning (ML)/AI requires understanding the signals and its physics-based features when the guided waves propagate to interact with the crack while the crack is simultaneously growing at different time scales. To enable the future of physics to be informed and physics driven ML/AI this article presents a framework of CNDE where guided wave propagation and crack propagation are simultaneously simulated without remeshing and creates an enabling approach for the future AI implementation. A few successful case studies are presented for feasibility demonstration. Detailed flowcharts are presented for easy implementation of the method for the ultrasonic NDE community.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"151 ","pages":"Article 107637"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X25000745","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Advancement of computation nondestructive evaluation (CNDE) creates an opportunity to visualize predicted signals received by sensors and may aid the development of artificial intelligence (AI) for NDE 4.0. However, traditional methods face limitations for crack propagation and guided wave propagation simulation, simultaneously. Modeling crack propagation using mesh-based method requires remeshing and implementation of cohesive zone model to name a few alternatives. Multiple meshfree methods have also been implemented for crack propagation but did not immediately translate to simulate the guided waves that are used to interrogate the cracks under nondestructive evaluation (NDE) framework. Ultrasonic CNDE with new era of Machine Learning (ML)/AI requires understanding the signals and its physics-based features when the guided waves propagate to interact with the crack while the crack is simultaneously growing at different time scales. To enable the future of physics to be informed and physics driven ML/AI this article presents a framework of CNDE where guided wave propagation and crack propagation are simultaneously simulated without remeshing and creates an enabling approach for the future AI implementation. A few successful case studies are presented for feasibility demonstration. Detailed flowcharts are presented for easy implementation of the method for the ultrasonic NDE community.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信