Metal-acid bifunctional catalysts based on porous aromatic frameworks for tandem alkylation-hydrogenation of phenolics with furanics

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED
Andrei Dubiniak , Leonid Kulikov , Sergey Egazar'yants , Anton Maximov , Eduard Karakhanov
{"title":"Metal-acid bifunctional catalysts based on porous aromatic frameworks for tandem alkylation-hydrogenation of phenolics with furanics","authors":"Andrei Dubiniak ,&nbsp;Leonid Kulikov ,&nbsp;Sergey Egazar'yants ,&nbsp;Anton Maximov ,&nbsp;Eduard Karakhanov","doi":"10.1016/j.micromeso.2025.113594","DOIUrl":null,"url":null,"abstract":"<div><div>Noble metal catalysts based on porous aromatic frameworks modified with sulfo groups were studied in tandem alkylation-hydrogenation reaction between lignocellulose-derived furanic (furfural, furfuryl alcohol and 5-hydroxymethylfurfural) and phenolic compounds (phenol, m-cresol, guaiacol) to produce high-density fuel precursors. Platinum catalysts were synthesized based on PAF-30-SO<sub>3</sub>H-3 and PAF-30-SO<sub>3</sub>H-5 supports with 3 and 5 % of sulfur, respectively, and both with 0.8 % of platinum. Hydroalkylation of mixtures of two substrates was performed. The reaction of guaiacol with furfuryl alcohol is characterized by the highest yields of long-chain products. The influence of substrates ratio, H<sub>2</sub> pressure, reaction temperature and time on selectivity and activity of the catalysts was studied. The highest yield (77 %) of long-chain oxygenates among all experiments was achieved under the following reaction conditions: 2 MPa H<sub>2</sub>, 4 h, 130 °C and 1:8 mol/mol furfuryl alcohol-guaiacol ratio. Catalysts Pd-PAF-30-SO<sub>3</sub>H-3 (with 1.1 % of palladium) and Ru-PAF-30-SO<sub>3</sub>H-3 (with 0.3 % of ruthenium) were tested in the tandem process to evaluate the impact of metal on reaction. To our knowledge, tandem alkylation-hydrogenation between biomass-derived furanics and phenolics over bifunctional catalysts based on organic polymers is reported for the first time. Moreover, some products of hydroalkylation (e.g., tricyclic oxygenates) haven't yet been described.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"390 ","pages":"Article 113594"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125001088","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Noble metal catalysts based on porous aromatic frameworks modified with sulfo groups were studied in tandem alkylation-hydrogenation reaction between lignocellulose-derived furanic (furfural, furfuryl alcohol and 5-hydroxymethylfurfural) and phenolic compounds (phenol, m-cresol, guaiacol) to produce high-density fuel precursors. Platinum catalysts were synthesized based on PAF-30-SO3H-3 and PAF-30-SO3H-5 supports with 3 and 5 % of sulfur, respectively, and both with 0.8 % of platinum. Hydroalkylation of mixtures of two substrates was performed. The reaction of guaiacol with furfuryl alcohol is characterized by the highest yields of long-chain products. The influence of substrates ratio, H2 pressure, reaction temperature and time on selectivity and activity of the catalysts was studied. The highest yield (77 %) of long-chain oxygenates among all experiments was achieved under the following reaction conditions: 2 MPa H2, 4 h, 130 °C and 1:8 mol/mol furfuryl alcohol-guaiacol ratio. Catalysts Pd-PAF-30-SO3H-3 (with 1.1 % of palladium) and Ru-PAF-30-SO3H-3 (with 0.3 % of ruthenium) were tested in the tandem process to evaluate the impact of metal on reaction. To our knowledge, tandem alkylation-hydrogenation between biomass-derived furanics and phenolics over bifunctional catalysts based on organic polymers is reported for the first time. Moreover, some products of hydroalkylation (e.g., tricyclic oxygenates) haven't yet been described.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信