Sustainable biomass processing: Optimizing energy efficiency through ash waste heat recovery for fuels dewatering

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Taikun Yin , Xinya Huang , Yikang Wang , Chao He , Liang Liu , Pengfei Li , Youzhou Jiao , Gang Li
{"title":"Sustainable biomass processing: Optimizing energy efficiency through ash waste heat recovery for fuels dewatering","authors":"Taikun Yin ,&nbsp;Xinya Huang ,&nbsp;Yikang Wang ,&nbsp;Chao He ,&nbsp;Liang Liu ,&nbsp;Pengfei Li ,&nbsp;Youzhou Jiao ,&nbsp;Gang Li","doi":"10.1016/j.wasman.2025.114752","DOIUrl":null,"url":null,"abstract":"<div><div>Biomass power generation technologies face challenges in cost competitiveness due to high energy consumption during dewatering. Utilizing waste heat for fuel dewatering is a viable solution to reduce energy consumption and improve efficiency. Herein, spherical heat carrier (SHC) was prepared by encapsulating sand using metal spherical shell, providing a low cost and efficient means for transferring ash heat to dewater biomass. The effects of temperature of heat source (ash or SHC), mixing mass ratio, loading of sand and moisture content of biomass on the recovery and utilization of ash waste heat, and dewatering effect of biomass were optimized by using response surface method. As results, ash temperature and mass ratio were the main factors affecting heat recovery rate and the effective heat transfer coefficient in the heat exchange between SHCs and ash, while SHC temperature and moisture content were the main factors of dehydration rate and the effective heat transfer coefficient in the peanut shells dewatering. The optimal overall thermal efficiency of the continuous process was 36% and the specific energy consumption was 2.13 kWh·kg<sub>water</sub><sup>−1</sup>. This work provided a technically feasible and efficient way for biomass ash waste heat utilization and biomass fuel dewatering.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"200 ","pages":"Article 114752"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25001576","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Biomass power generation technologies face challenges in cost competitiveness due to high energy consumption during dewatering. Utilizing waste heat for fuel dewatering is a viable solution to reduce energy consumption and improve efficiency. Herein, spherical heat carrier (SHC) was prepared by encapsulating sand using metal spherical shell, providing a low cost and efficient means for transferring ash heat to dewater biomass. The effects of temperature of heat source (ash or SHC), mixing mass ratio, loading of sand and moisture content of biomass on the recovery and utilization of ash waste heat, and dewatering effect of biomass were optimized by using response surface method. As results, ash temperature and mass ratio were the main factors affecting heat recovery rate and the effective heat transfer coefficient in the heat exchange between SHCs and ash, while SHC temperature and moisture content were the main factors of dehydration rate and the effective heat transfer coefficient in the peanut shells dewatering. The optimal overall thermal efficiency of the continuous process was 36% and the specific energy consumption was 2.13 kWh·kgwater−1. This work provided a technically feasible and efficient way for biomass ash waste heat utilization and biomass fuel dewatering.
可持续生物质处理:通过灰余热回收燃料脱水优化能源效率
生物质发电技术由于脱水过程能耗高,在成本竞争力方面面临挑战。利用余热进行燃料脱水是降低能耗、提高效率的可行方案。本文采用金属球壳包覆砂制备球形热载体,为灰热向脱水生物质的传递提供了低成本、高效的手段。采用响应面法优化了热源温度(灰或SHC)、掺量比、载砂量和生物质含水率对灰余热回收利用和生物质脱水效果的影响。结果表明,在花生壳脱水过程中,影响花生壳热回收率和有效换热系数的主要因素是灰温和质量比,影响花生壳脱水过程中脱水率和有效换热系数的主要因素是灰温和质量比。连续工艺的最佳总热效率为36%,比能耗为2.13 kWh·kgwater−1。为生物质灰余热利用和生物质燃料脱水提供了一条技术上可行、高效的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信