Exploring the mechanism of Taohong Siwu decoction in the treatment of hyperlipidemia based on network pharmacology and zebrafish models

Mingyang Li , Xinmei Zhang , Chunyue Bao , Fan Li , Yulong Wu , Guangming Huo , Chuanfeng Tang , Jianmei Li
{"title":"Exploring the mechanism of Taohong Siwu decoction in the treatment of hyperlipidemia based on network pharmacology and zebrafish models","authors":"Mingyang Li ,&nbsp;Xinmei Zhang ,&nbsp;Chunyue Bao ,&nbsp;Fan Li ,&nbsp;Yulong Wu ,&nbsp;Guangming Huo ,&nbsp;Chuanfeng Tang ,&nbsp;Jianmei Li","doi":"10.1016/j.prmcm.2025.100600","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Taohong Siwu Decoction (TSD) is a traditional Chinese medicine used to treat cardiovascular diseases and blood stasis. This study explores the therapeutic mechanisms of TSD in treating hyperlipidemia using a network pharmacology approach combined with a zebrafish hyperlipidemia model.</div></div><div><h3>Methods</h3><div>Compounds in TSD were sourced from a database and filtered based on oral bioavailability and drug-likeness. Herbal targets were predicted using online tools, and hyperlipidemia-related genes were identified via GeneCards. Pathway analysis was conducted to pinpoint relevant signaling pathways. Molecular docking, performed with AutoDock, assessed the binding affinity of key compounds to target proteins. In vivo experiments using zebrafish models evaluated the anti-hyperlipidemic, anti-inflammatory, and antioxidant effects of TSD, with RT-qPCR used to verify the expression of predicted targets.</div></div><div><h3>Results</h3><div>Network pharmacology analysis revealed 45 bioactive phytochemicals and 72 potential target genes implicated in hyperlipidemia-related pathways. Six principal bioactive compounds—quercetin, luteolin, myricanone, stigmasterol, kaempferol, and β-sitosterol—were identified as modulators of core therapeutic targets including TNF, IL6, IL1B, PTGS2, PPARG, ESR1, PTGS1, and PIK3CG, influencing critical pathways associated with inflammatory responses, oxidative stress modulation, and lipid metabolism regulation. Molecular docking analysis demonstrated robust binding affinities between these compounds and their respective targets, particularly PTGS2 and PIK3CG. Zebrafish experiments substantiated TSD's therapeutic efficacy in ameliorating hyperlipidemia, attenuating inflammation, and mitigating oxidative stress, thereby validating the predicted mechanisms of action.</div></div><div><h3>Discussion/Conclusions</h3><div>TSD exhibits a characteristic multi-component, multi-target, and multi-pathway therapeutic profile in the management of hyperlipidemia and associated atherosclerotic conditions. These findings support its clinical application and provide a theoretical basis for future research.</div></div>","PeriodicalId":101013,"journal":{"name":"Pharmacological Research - Modern Chinese Medicine","volume":"15 ","pages":"Article 100600"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological Research - Modern Chinese Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667142525000296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Taohong Siwu Decoction (TSD) is a traditional Chinese medicine used to treat cardiovascular diseases and blood stasis. This study explores the therapeutic mechanisms of TSD in treating hyperlipidemia using a network pharmacology approach combined with a zebrafish hyperlipidemia model.

Methods

Compounds in TSD were sourced from a database and filtered based on oral bioavailability and drug-likeness. Herbal targets were predicted using online tools, and hyperlipidemia-related genes were identified via GeneCards. Pathway analysis was conducted to pinpoint relevant signaling pathways. Molecular docking, performed with AutoDock, assessed the binding affinity of key compounds to target proteins. In vivo experiments using zebrafish models evaluated the anti-hyperlipidemic, anti-inflammatory, and antioxidant effects of TSD, with RT-qPCR used to verify the expression of predicted targets.

Results

Network pharmacology analysis revealed 45 bioactive phytochemicals and 72 potential target genes implicated in hyperlipidemia-related pathways. Six principal bioactive compounds—quercetin, luteolin, myricanone, stigmasterol, kaempferol, and β-sitosterol—were identified as modulators of core therapeutic targets including TNF, IL6, IL1B, PTGS2, PPARG, ESR1, PTGS1, and PIK3CG, influencing critical pathways associated with inflammatory responses, oxidative stress modulation, and lipid metabolism regulation. Molecular docking analysis demonstrated robust binding affinities between these compounds and their respective targets, particularly PTGS2 and PIK3CG. Zebrafish experiments substantiated TSD's therapeutic efficacy in ameliorating hyperlipidemia, attenuating inflammation, and mitigating oxidative stress, thereby validating the predicted mechanisms of action.

Discussion/Conclusions

TSD exhibits a characteristic multi-component, multi-target, and multi-pathway therapeutic profile in the management of hyperlipidemia and associated atherosclerotic conditions. These findings support its clinical application and provide a theoretical basis for future research.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信