Impact of atmospheric stability on wind farm performance: Insights from internal boundary layer dynamics

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Yan Wang , Pan Lu , Yongze Zhou , Mingwei Ge , Rennian Li
{"title":"Impact of atmospheric stability on wind farm performance: Insights from internal boundary layer dynamics","authors":"Yan Wang ,&nbsp;Pan Lu ,&nbsp;Yongze Zhou ,&nbsp;Mingwei Ge ,&nbsp;Rennian Li","doi":"10.1016/j.energy.2025.135157","DOIUrl":null,"url":null,"abstract":"<div><div>The flow characteristics of the atmospheric boundary layer (ABL) and its interactions with wind farms are critical to assessing the aerodynamic performance of wind turbines. In this study, large eddy simulation (LES) was employed to investigate these interactions across different atmospheric stratifications, with a particular focus on the evolution of the internal boundary layer (IBL) and its effects on turbine wake characteristics and overall wind farm performance. The results indicate that the IBL evolves into distinct scenarios depending on the flow field characteristics, which substantially influence the mixing of turbine wakes with background turbulence, ultimately leading to significant sensitivity of wind farm performance to scale variations across different atmospheric stratifications. For wind farms with fewer than nine rows of turbines, power output progressively decreases as atmospheric stratification intensifies. However, once the number of turbine rows reaches ten, power output under stable stratification increases unexpectedly by 1.4% compared to neutral stratification. As the wind farm scale “expands” beyond ten rows, the difference in power output between stable and convective stratification diminishes and may even reverse, until the IBL reaches a fully-developed regime. These findings contribute to resolving the ongoing controversy regarding the effects of atmospheric stability on wind farm power generation.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"321 ","pages":"Article 135157"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225007996","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The flow characteristics of the atmospheric boundary layer (ABL) and its interactions with wind farms are critical to assessing the aerodynamic performance of wind turbines. In this study, large eddy simulation (LES) was employed to investigate these interactions across different atmospheric stratifications, with a particular focus on the evolution of the internal boundary layer (IBL) and its effects on turbine wake characteristics and overall wind farm performance. The results indicate that the IBL evolves into distinct scenarios depending on the flow field characteristics, which substantially influence the mixing of turbine wakes with background turbulence, ultimately leading to significant sensitivity of wind farm performance to scale variations across different atmospheric stratifications. For wind farms with fewer than nine rows of turbines, power output progressively decreases as atmospheric stratification intensifies. However, once the number of turbine rows reaches ten, power output under stable stratification increases unexpectedly by 1.4% compared to neutral stratification. As the wind farm scale “expands” beyond ten rows, the difference in power output between stable and convective stratification diminishes and may even reverse, until the IBL reaches a fully-developed regime. These findings contribute to resolving the ongoing controversy regarding the effects of atmospheric stability on wind farm power generation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信