{"title":"Artificial Intelligence in Cardiovascular Imaging and Interventional Cardiology: Emerging Trends and Clinical Implications","authors":"Maryam Alsharqi DPhil , Elazer R. Edelman MD, PhD","doi":"10.1016/j.jscai.2024.102558","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence (AI) has revolutionized the field of cardiovascular imaging, serving as a unifying force that brings together multiple modalities under a single platform. The utility of noninvasive imaging ranges from diagnostic assessment and guiding interventions to prognostic stratification. Multimodality imaging has demonstrated important potential, particularly in patients with heterogeneous diseases, such as heart failure and atrial fibrillation. Facilitating complex interventional procedures requires accurate image acquisition and interpretation along with precise decision-making. The unique nature of interventional cardiology procedures benefiting from different imaging modalities presents an ideal target for the development of AI-assisted decision-making tools to improve workflow in the catheterization laboratory and personalize the need for transcatheter interventions. This review explores the advancements of AI in noninvasive cardiovascular imaging and interventional cardiology, addressing the clinical use and challenges of current imaging modalities, emerging trends, and promising applications as well as considerations for safe implementation of AI tools in clinical practice. Current practice has moved well beyond the question of whether we should or should not use AI in clinical health care settings. AI, in all its forms, has become deeply embedded in clinical workflows, particularly in cardiovascular imaging and interventional cardiology. It can, in the future, not only add precision and quantification but also serve as a means by which to fuse and link multimodalities together. It is only by understanding how AI techniques work, that the field can be harnessed for the greater good and avoid uninformed bias or misleading diagnoses.</div></div>","PeriodicalId":73990,"journal":{"name":"Journal of the Society for Cardiovascular Angiography & Interventions","volume":"4 3","pages":"Article 102558"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society for Cardiovascular Angiography & Interventions","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772930324022476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) has revolutionized the field of cardiovascular imaging, serving as a unifying force that brings together multiple modalities under a single platform. The utility of noninvasive imaging ranges from diagnostic assessment and guiding interventions to prognostic stratification. Multimodality imaging has demonstrated important potential, particularly in patients with heterogeneous diseases, such as heart failure and atrial fibrillation. Facilitating complex interventional procedures requires accurate image acquisition and interpretation along with precise decision-making. The unique nature of interventional cardiology procedures benefiting from different imaging modalities presents an ideal target for the development of AI-assisted decision-making tools to improve workflow in the catheterization laboratory and personalize the need for transcatheter interventions. This review explores the advancements of AI in noninvasive cardiovascular imaging and interventional cardiology, addressing the clinical use and challenges of current imaging modalities, emerging trends, and promising applications as well as considerations for safe implementation of AI tools in clinical practice. Current practice has moved well beyond the question of whether we should or should not use AI in clinical health care settings. AI, in all its forms, has become deeply embedded in clinical workflows, particularly in cardiovascular imaging and interventional cardiology. It can, in the future, not only add precision and quantification but also serve as a means by which to fuse and link multimodalities together. It is only by understanding how AI techniques work, that the field can be harnessed for the greater good and avoid uninformed bias or misleading diagnoses.