Hyungjoon Son , Sungyoun Na , Ming Guo , Dang Khoi Le , Joon Yong Yoon , Xun Sun
{"title":"Sludge disintegration through advanced rotational hydrodynamic cavitation reactor for improvement of biogas production","authors":"Hyungjoon Son , Sungyoun Na , Ming Guo , Dang Khoi Le , Joon Yong Yoon , Xun Sun","doi":"10.1016/j.jece.2025.116116","DOIUrl":null,"url":null,"abstract":"<div><div>Sustainable sludge management in wastewater treatment plants (WWTPs) is vital. This study evaluated an advanced rotational hydrodynamic cavitation reactor (ARHCR) for its impact on anaerobic digestion (AD). Sludge was treated under varying rotational speeds, inlet pressures, and pressure drops, followed by biochemical methane potential (BMP) tests to assess AD performance. The results demonstrated the significant biogas yield improvement (14.4 % to 96.5 %) due to effective sludge disintegration, with rotational speed being the most influential factor. Lower-severity conditions may maximize profits by reducing bio-refractory substance formation. A comparative analysis demonstrated the ARHCR’s scalability advantage, particularly due to its effective hydrodynamic cavitation generation. Additionally, dimensional analysis confirmed its scale-up potential over similar reactors. An energy balance study revealed a 20 % increase in energy efficiency for AD with the ARHCR, supporting its feasibility as an efficient and sustainable sludge treatment solution. These findings highlight the ARHCR’s potential for enhancing WWTP sustainability.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"13 3","pages":"Article 116116"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343725008127","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainable sludge management in wastewater treatment plants (WWTPs) is vital. This study evaluated an advanced rotational hydrodynamic cavitation reactor (ARHCR) for its impact on anaerobic digestion (AD). Sludge was treated under varying rotational speeds, inlet pressures, and pressure drops, followed by biochemical methane potential (BMP) tests to assess AD performance. The results demonstrated the significant biogas yield improvement (14.4 % to 96.5 %) due to effective sludge disintegration, with rotational speed being the most influential factor. Lower-severity conditions may maximize profits by reducing bio-refractory substance formation. A comparative analysis demonstrated the ARHCR’s scalability advantage, particularly due to its effective hydrodynamic cavitation generation. Additionally, dimensional analysis confirmed its scale-up potential over similar reactors. An energy balance study revealed a 20 % increase in energy efficiency for AD with the ARHCR, supporting its feasibility as an efficient and sustainable sludge treatment solution. These findings highlight the ARHCR’s potential for enhancing WWTP sustainability.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.