Breaking the pH limitation by Mo modulated amorphous medium-entropy alloys as efficient advanced oxidation catalysts

IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL
Xilin Wu , Shun-Xing Liang , Lingjie Jia , Yufeng Liu , Yuexian Huang , Yujing Liu , Liang-Yu Chen , Yuanzheng Yang , Pingjun Tao
{"title":"Breaking the pH limitation by Mo modulated amorphous medium-entropy alloys as efficient advanced oxidation catalysts","authors":"Xilin Wu ,&nbsp;Shun-Xing Liang ,&nbsp;Lingjie Jia ,&nbsp;Yufeng Liu ,&nbsp;Yuexian Huang ,&nbsp;Yujing Liu ,&nbsp;Liang-Yu Chen ,&nbsp;Yuanzheng Yang ,&nbsp;Pingjun Tao","doi":"10.1016/j.jece.2025.116151","DOIUrl":null,"url":null,"abstract":"<div><div>The inherent limitations of conventional metallic glass (MG) catalysts in adapting to complex water environments over a wide pH range stem from their monotonic active site, which is incapable of simultaneously fulfilling multiple functional purposes. Herein, we overcome the narrow range of pH adaptability of existing advanced oxidation catalysts by designing a series of quinary FeCoNiMoB medium-entropy alloys in amorphous structure (referred to as A-MEAs). In particular, the slight modulation of Mo to obtain Fe<sub>25</sub>Co<sub>25</sub>Ni<sub>25</sub>Mo<sub>0.5</sub>B<sub>24.5</sub> A-MEA with highest Gibbs free energy achieves a complete degradation of pollutants both at acidic and alkaline conditions in 10 min. This performance surpasses that of most traditional MGs and high-entropy alloys (HEAs) constrained by the composition limits for entropy maximization. Further insights reveal that in both cases, the multi-site synergistic effects of Mo-driven fast electron transfer of M (M = Fe, Co, and Ni) as active sites and surface-mediated reaction cycles of M<sup>2 +</sup>/M<sup>3+</sup> contribute to the accelerated transformation of reactive oxygen species (ROS) from peroxydisulfate (PDS) and the remarkable catalytic performance of A-MEAs. The radical evolution demonstrates that SO<sub>4</sub>·‾ plays a major role under acidic conditions while O<sub>2</sub>·‾ dominates the catalytic reactions under alkaline conditions. Accordingly, this work aims to fill the gap of A-MEAs for catalytic oxidation of organic pollutants and provide the design strategy of novel MEA catalysts.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"13 3","pages":"Article 116151"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343725008474","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The inherent limitations of conventional metallic glass (MG) catalysts in adapting to complex water environments over a wide pH range stem from their monotonic active site, which is incapable of simultaneously fulfilling multiple functional purposes. Herein, we overcome the narrow range of pH adaptability of existing advanced oxidation catalysts by designing a series of quinary FeCoNiMoB medium-entropy alloys in amorphous structure (referred to as A-MEAs). In particular, the slight modulation of Mo to obtain Fe25Co25Ni25Mo0.5B24.5 A-MEA with highest Gibbs free energy achieves a complete degradation of pollutants both at acidic and alkaline conditions in 10 min. This performance surpasses that of most traditional MGs and high-entropy alloys (HEAs) constrained by the composition limits for entropy maximization. Further insights reveal that in both cases, the multi-site synergistic effects of Mo-driven fast electron transfer of M (M = Fe, Co, and Ni) as active sites and surface-mediated reaction cycles of M2 +/M3+ contribute to the accelerated transformation of reactive oxygen species (ROS) from peroxydisulfate (PDS) and the remarkable catalytic performance of A-MEAs. The radical evolution demonstrates that SO4·‾ plays a major role under acidic conditions while O2·‾ dominates the catalytic reactions under alkaline conditions. Accordingly, this work aims to fill the gap of A-MEAs for catalytic oxidation of organic pollutants and provide the design strategy of novel MEA catalysts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Chemical Engineering
Journal of Environmental Chemical Engineering Environmental Science-Pollution
CiteScore
11.40
自引率
6.50%
发文量
2017
审稿时长
27 days
期刊介绍: The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信