3D porous carbon materials in situ-embedded with Fe3C/Fe nanoparticles as high-performance anode electrocatalysts of microbial fuel cells

IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL
Shaochuan Wang , Dongsheng Zhao , Zhenghui Qiu , Guiling Zhang , Cunguo Lin
{"title":"3D porous carbon materials in situ-embedded with Fe3C/Fe nanoparticles as high-performance anode electrocatalysts of microbial fuel cells","authors":"Shaochuan Wang ,&nbsp;Dongsheng Zhao ,&nbsp;Zhenghui Qiu ,&nbsp;Guiling Zhang ,&nbsp;Cunguo Lin","doi":"10.1016/j.jece.2025.116171","DOIUrl":null,"url":null,"abstract":"<div><div>The power output of microbial fuel cells (MFCs) depends on the biofilm activity on the anode and the electron transfer efficiency between electrode and microbes. Therefore, enhancing the biocompatibility and conductivity of the anode is the key to improving MFCs performance. In this work, a series of porous carbon (PC) materials with core-shell nanoparticles (carbon shell, Fe<sub>3</sub>C/Fe core), denoted as Fe<sub>3</sub>C/Fe@PC<sub>X</sub>, were prepared using a nitrate-assisted polymer bubbling method by pyrolyzing polyvinylpyrrolidone (PVP) with ferric nitrate (Fe(NO<sub>3</sub>)<sub>3</sub>). These materials were coated on carbon felt (CF) to serve as the modified anode for the MFCs. An optimal foaming agent dosage led to a porous structure (Fe<sub>3</sub>C/Fe@PC<sub>1.8</sub>), giving the anode excellent surface morphology, conductivity, and biocompatibility, thereby enhancing the enrichment of dominant electroactive microorganisms and biofilm activity, and significantly improving electron transfer efficiency and MFC power output. The anode resistance (R<sub>anode</sub>) of the MFCs equipped with the Fe<sub>3</sub>C/Fe@PC<sub>1.8</sub>-CF is only 131.50 Ω, significantly lower than that of the control group (2449.00 Ω). The maximum output voltage reaches 0.687 V, and the power density is 4.90 W/m<sup>2</sup>, which are 1.46 and 2.28 times greater than the control group, respectively. The superior performance of the modified anode demonstrates significant potential for application in high-performance MFCs.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"13 3","pages":"Article 116171"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221334372500867X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The power output of microbial fuel cells (MFCs) depends on the biofilm activity on the anode and the electron transfer efficiency between electrode and microbes. Therefore, enhancing the biocompatibility and conductivity of the anode is the key to improving MFCs performance. In this work, a series of porous carbon (PC) materials with core-shell nanoparticles (carbon shell, Fe3C/Fe core), denoted as Fe3C/Fe@PCX, were prepared using a nitrate-assisted polymer bubbling method by pyrolyzing polyvinylpyrrolidone (PVP) with ferric nitrate (Fe(NO3)3). These materials were coated on carbon felt (CF) to serve as the modified anode for the MFCs. An optimal foaming agent dosage led to a porous structure (Fe3C/Fe@PC1.8), giving the anode excellent surface morphology, conductivity, and biocompatibility, thereby enhancing the enrichment of dominant electroactive microorganisms and biofilm activity, and significantly improving electron transfer efficiency and MFC power output. The anode resistance (Ranode) of the MFCs equipped with the Fe3C/Fe@PC1.8-CF is only 131.50 Ω, significantly lower than that of the control group (2449.00 Ω). The maximum output voltage reaches 0.687 V, and the power density is 4.90 W/m2, which are 1.46 and 2.28 times greater than the control group, respectively. The superior performance of the modified anode demonstrates significant potential for application in high-performance MFCs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Chemical Engineering
Journal of Environmental Chemical Engineering Environmental Science-Pollution
CiteScore
11.40
自引率
6.50%
发文量
2017
审稿时长
27 days
期刊介绍: The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信