Modifying the Dzyaloshinskii–Moriya Interaction via Disruption of Ordered Intercalation in a van der Waals Magnet

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yangrui Liu, Jianxiong Zhang, Ying Liu, Jiadong Dan, Luyang Wang, Wei Liu*, Lei Zhang, Fengshan Zheng, Haifeng Du*, Binghui Ge*, Jin-Zhu Zhao* and Dongsheng Song*, 
{"title":"Modifying the Dzyaloshinskii–Moriya Interaction via Disruption of Ordered Intercalation in a van der Waals Magnet","authors":"Yangrui Liu,&nbsp;Jianxiong Zhang,&nbsp;Ying Liu,&nbsp;Jiadong Dan,&nbsp;Luyang Wang,&nbsp;Wei Liu*,&nbsp;Lei Zhang,&nbsp;Fengshan Zheng,&nbsp;Haifeng Du*,&nbsp;Binghui Ge*,&nbsp;Jin-Zhu Zhao* and Dongsheng Song*,&nbsp;","doi":"10.1021/acs.nanolett.5c0075110.1021/acs.nanolett.5c00751","DOIUrl":null,"url":null,"abstract":"<p >The intercalation of magnetic atoms into van der Waals (vdW) gaps offers a unique opportunity to manipulate the Dzyaloshinskii–Moriya interaction (DMI) and magnetic structures by modifying the local atomic structures in vdW magnets. Herein, a new strategy is proposed for modifying DMI by disrupting the atomic-scale order within the Cr sublattice of Cr-intercalated 2H-TaS<sub>2</sub>, i.e., Cr<sub>1/3</sub>TaS<sub>2</sub>, which enables significant and efficient DMI modulation across a wide range by controlling the degree of atomic disorder. Lorentz transmission electron microscopy reveals pronounced variations in spin-helix periods, which are correlated with changes in the degree of Cr ordering within the vdW gaps, as shown by atomic-resolution imaging and principal component analysis. First-principles calculations confirm that this structural ordering affects the DMI strength, thereby notably altering the spin textures and magnetic transition behaviors. These findings are further supported by macroscopic magnetic measurements and micromagnetic simulations, highlighting new pathways for controlling magnetic properties of vdW materials.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 11","pages":"4621–4627 4621–4627"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c00751","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The intercalation of magnetic atoms into van der Waals (vdW) gaps offers a unique opportunity to manipulate the Dzyaloshinskii–Moriya interaction (DMI) and magnetic structures by modifying the local atomic structures in vdW magnets. Herein, a new strategy is proposed for modifying DMI by disrupting the atomic-scale order within the Cr sublattice of Cr-intercalated 2H-TaS2, i.e., Cr1/3TaS2, which enables significant and efficient DMI modulation across a wide range by controlling the degree of atomic disorder. Lorentz transmission electron microscopy reveals pronounced variations in spin-helix periods, which are correlated with changes in the degree of Cr ordering within the vdW gaps, as shown by atomic-resolution imaging and principal component analysis. First-principles calculations confirm that this structural ordering affects the DMI strength, thereby notably altering the spin textures and magnetic transition behaviors. These findings are further supported by macroscopic magnetic measurements and micromagnetic simulations, highlighting new pathways for controlling magnetic properties of vdW materials.

Abstract Image

范德华磁体中有序插层破坏对Dzyaloshinskii-Moriya相互作用的影响
磁性原子嵌入到范德华(vdW)间隙中,通过改变vdW磁体中的局部原子结构,为操纵Dzyaloshinskii-Moriya相互作用(DMI)和磁性结构提供了独特的机会。本文提出了一种通过破坏Cr插层2H-TaS2的Cr亚晶格(即Cr1/3TaS2)内的原子尺度顺序来修改DMI的新策略,该策略通过控制原子无序程度来实现在大范围内显著而有效的DMI调制。通过原子分辨率成像和主成分分析,洛伦兹透射电子显微镜显示了自旋螺旋周期的明显变化,这与vdW间隙内Cr有序程度的变化有关。第一性原理计算证实,这种结构顺序影响DMI强度,从而显著改变自旋织构和磁跃迁行为。这些发现得到了宏观磁测量和微磁模拟的进一步支持,为控制vdW材料的磁性提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信