Zhengshun Lei, Weiqiang Xie*, Wenqi Wei, Zihao Wang, Ting Wang, Chao Xiang, Jianjun Zhang and Yikai Su,
{"title":"Efficient Broadband Wavelength Conversion in AlGaAsOI Nonlinear Nanowaveguides Using Low-Power Continuous-Wave Pump","authors":"Zhengshun Lei, Weiqiang Xie*, Wenqi Wei, Zihao Wang, Ting Wang, Chao Xiang, Jianjun Zhang and Yikai Su, ","doi":"10.1021/acsphotonics.4c0244710.1021/acsphotonics.4c02447","DOIUrl":null,"url":null,"abstract":"<p >Nonlinear wavelength conversion based on four-wave mixing (FWM) is a key function for optical signal processing in photonic integrated systems. Although various integrated waveguide platforms have been proposed for on-chip wavelength converters, it remains a great challenge to realize efficient broadband wavelength conversion using a low-power pump due to the lack of sufficient nonlinear gain in waveguides. To address this challenge, we develop centimeter-scale long, low-loss, spiral nanowaveguides on a highly nonlinear AlGaAs-on-insulator (AlGaAsOI) platform. Through dedicated waveguide dispersion engineering, we demonstrate a broadband wavelength conversion with a 3-dB bandwidth over 130 nm at the telecom bands and a flat conversion efficiency over −10 dB in the whole band, using a single continuous-wave low-power pump of ∼18 dBm. A theoretical analysis not only shows excellent agreement with our experimental results but also reveals a viable route for further performance improvement by reducing the propagation loss and/or tailoring the dimension of waveguides. The demonstrated high-performance wavelength converters provide a practical solution for compact and power-efficient wavelength conversion in optical signal processing. Furthermore, our work highlights the great potential of highly nonlinear AlGaAsOI nanowaveguides in chip-scale <i>χ</i><sup>(3)</sup>-based nonlinear applications with ultrahigh performance.</p>","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"12 3","pages":"1619–1627 1619–1627"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphotonics.4c02447","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nonlinear wavelength conversion based on four-wave mixing (FWM) is a key function for optical signal processing in photonic integrated systems. Although various integrated waveguide platforms have been proposed for on-chip wavelength converters, it remains a great challenge to realize efficient broadband wavelength conversion using a low-power pump due to the lack of sufficient nonlinear gain in waveguides. To address this challenge, we develop centimeter-scale long, low-loss, spiral nanowaveguides on a highly nonlinear AlGaAs-on-insulator (AlGaAsOI) platform. Through dedicated waveguide dispersion engineering, we demonstrate a broadband wavelength conversion with a 3-dB bandwidth over 130 nm at the telecom bands and a flat conversion efficiency over −10 dB in the whole band, using a single continuous-wave low-power pump of ∼18 dBm. A theoretical analysis not only shows excellent agreement with our experimental results but also reveals a viable route for further performance improvement by reducing the propagation loss and/or tailoring the dimension of waveguides. The demonstrated high-performance wavelength converters provide a practical solution for compact and power-efficient wavelength conversion in optical signal processing. Furthermore, our work highlights the great potential of highly nonlinear AlGaAsOI nanowaveguides in chip-scale χ(3)-based nonlinear applications with ultrahigh performance.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.