{"title":"Non-negligible Organic Carbon Transfer during Organic Pollutant Degradation Processes by Advanced Oxidation Technologies","authors":"Zhuan Chen, and , Mingyang Xing*, ","doi":"10.1021/acsenvironau.4c0006310.1021/acsenvironau.4c00063","DOIUrl":null,"url":null,"abstract":"<p >Heterogeneous Fenton and Fenton-like reactions, as one of the significant development directions of advanced oxidation processes (AOPs), still have some limitations that hinder their large-scale practical application. Organic carbon transfer processes (OCTPs) in AOPs including direct oxidation transfer processes (DOTPs) and changes in the solubility of pollutant reaction intermediates can lead to a significant accumulation of organics on the catalyst. The accumulation of organics severely impacts the sustainability of the catalyst and may lead to erroneous guidance about the mineralization rate of the reaction system. This perspective provides a comprehensive overview of recent research on OCTPs and presents new viewpoints and research directions for heterogeneous AOPs.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 2","pages":"148–151 148–151"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.4c00063","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Environmental Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenvironau.4c00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous Fenton and Fenton-like reactions, as one of the significant development directions of advanced oxidation processes (AOPs), still have some limitations that hinder their large-scale practical application. Organic carbon transfer processes (OCTPs) in AOPs including direct oxidation transfer processes (DOTPs) and changes in the solubility of pollutant reaction intermediates can lead to a significant accumulation of organics on the catalyst. The accumulation of organics severely impacts the sustainability of the catalyst and may lead to erroneous guidance about the mineralization rate of the reaction system. This perspective provides a comprehensive overview of recent research on OCTPs and presents new viewpoints and research directions for heterogeneous AOPs.
期刊介绍:
ACS Environmental Au is an open access journal which publishes experimental research and theoretical results in all aspects of environmental science and technology both pure and applied. Short letters comprehensive articles reviews and perspectives are welcome in the following areas:Alternative EnergyAnthropogenic Impacts on Atmosphere Soil or WaterBiogeochemical CyclingBiomass or Wastes as ResourcesContaminants in Aquatic and Terrestrial EnvironmentsEnvironmental Data ScienceEcotoxicology and Public HealthEnergy and ClimateEnvironmental Modeling Processes and Measurement Methods and TechnologiesEnvironmental Nanotechnology and BiotechnologyGreen ChemistryGreen Manufacturing and EngineeringRisk assessment Regulatory Frameworks and Life-Cycle AssessmentsTreatment and Resource Recovery and Waste Management