Subwavelength Localized All-Optical Helicity-Independent Magnetic Switching Using Plasmonic Gold Nanostructures

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Themistoklis Sidiropoulos, Puloma Singh, Tino Noll, Michael Schneider, Dieter Engel, Denny Sommer, Felix Steinbach, Ingo Will, Bastian Pfau, Clemens von Korff Schmising, Stefan Eisebitt
{"title":"Subwavelength Localized All-Optical Helicity-Independent Magnetic Switching Using Plasmonic Gold Nanostructures","authors":"Themistoklis Sidiropoulos, Puloma Singh, Tino Noll, Michael Schneider, Dieter Engel, Denny Sommer, Felix Steinbach, Ingo Will, Bastian Pfau, Clemens von Korff Schmising, Stefan Eisebitt","doi":"10.1021/acs.nanolett.4c04024","DOIUrl":null,"url":null,"abstract":"All-optical, helicity-independent magnetization switching (AO-HIS) is promising for future ultrafast, energy-efficient magnetic data storage. Achieving high bit density requires the reduction of optically addressed magnetic bit sizes at deterministic locations. Metallic nanostructures that support localized surface plasmons enable electromagnetic confinement below the diffraction limit. Rare-earth transition metal alloys like GdTbCo support stable nanometer-sized magnetic domains. We fabricate plasmonic gold nanostructures on a GdTbCo film and demonstrate in situ deterministic toggling of magnetic states through optical excitation using magnetic force microscopy. Imaging the magnetic state with nanometer resolution allows us to observe AO-HIS with a minimum width of 240 nm localized at the edges of plasmonic nanobars following excitation by a single ultrashort laser pulse at 1030 nm. The strong optical field localization via plasmonic nanobars enables reproducible AO-HIS on subwavelength scales. Additionally, high-resolution magnetic imaging highlights differences between the magnetic switching pattern for on- and off-resonant excitation of plasmonic nanodiscs.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"61 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04024","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

All-optical, helicity-independent magnetization switching (AO-HIS) is promising for future ultrafast, energy-efficient magnetic data storage. Achieving high bit density requires the reduction of optically addressed magnetic bit sizes at deterministic locations. Metallic nanostructures that support localized surface plasmons enable electromagnetic confinement below the diffraction limit. Rare-earth transition metal alloys like GdTbCo support stable nanometer-sized magnetic domains. We fabricate plasmonic gold nanostructures on a GdTbCo film and demonstrate in situ deterministic toggling of magnetic states through optical excitation using magnetic force microscopy. Imaging the magnetic state with nanometer resolution allows us to observe AO-HIS with a minimum width of 240 nm localized at the edges of plasmonic nanobars following excitation by a single ultrashort laser pulse at 1030 nm. The strong optical field localization via plasmonic nanobars enables reproducible AO-HIS on subwavelength scales. Additionally, high-resolution magnetic imaging highlights differences between the magnetic switching pattern for on- and off-resonant excitation of plasmonic nanodiscs.

Abstract Image

利用等离子体金纳米结构的亚波长局域全光磁开关
全光、非螺旋磁化开关(AO-HIS)在未来的超快、高能效磁数据存储中具有广阔的应用前景。实现高比特密度需要在确定位置减小光寻址磁比特尺寸。支持局域表面等离子体的金属纳米结构可以实现低于衍射极限的电磁约束。稀土过渡金属合金如GdTbCo支持稳定的纳米级磁畴。我们在GdTbCo薄膜上制备了等离子体金纳米结构,并利用磁力显微镜通过光学激发演示了磁态的原位确定性切换。利用纳米分辨率对磁态进行成像,我们可以观察到在1030 nm的单次超短激光脉冲激发下,等离子体纳米棒边缘处最小宽度为240 nm的AO-HIS。通过等离子体纳米棒的强光场定位,可以在亚波长尺度上重现AO-HIS。此外,高分辨率的磁成像突出了等离子体纳米片在开启和关闭共振激发下的磁开关模式的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信