Elucidating the Functional Orbital Evolution in Transition Metal-Doped Bi3O4Br Platforms for CO2 Photoreduction

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-18 DOI:10.1002/smll.202412527
Xiaoyang Yue, Chen Guan, Hui Yang, Minshu Chen, Quanjun Xiang
{"title":"Elucidating the Functional Orbital Evolution in Transition Metal-Doped Bi3O4Br Platforms for CO2 Photoreduction","authors":"Xiaoyang Yue,&nbsp;Chen Guan,&nbsp;Hui Yang,&nbsp;Minshu Chen,&nbsp;Quanjun Xiang","doi":"10.1002/smll.202412527","DOIUrl":null,"url":null,"abstract":"<p>Frontier orbital hybridization plays a vital role in the initial adsorption and activation process during catalysis. A formidable challenge is the precise determination of active orbitals/sites. Herein, 2D Bi<sub>3</sub>O<sub>4</sub>Br nanosheets are adopted as an operable platform for heteroatom doping of various transition metals (Fe, Ni, Zn/Cd). As the atom number of dopants increases, the capability of selective CO<sub>2</sub> photoconversion is continuously amplified. The intrinsic nature is the variation of active functional orbital as indicated from band center distance (Δ<i>d/p-p</i>) indicators. The calculated charge transfer of various CO<sub>2</sub>-bound geometries further demonstrates the <i>p-p</i> orbital interaction overwhelms <i>d-p</i> orbital interaction. X-ray photoelectron spectroscopy and X-ray absorption spectroscopy results verify the charged nature of Bi sites with <i>6p</i> orbitals not fully filled by electrons. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis and Gibbs free energy change profile suggest the rapid emergence of the critical <sup>*</sup>COOH intermediate in a thermodynamically preferred pathway.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 17","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202412527","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Frontier orbital hybridization plays a vital role in the initial adsorption and activation process during catalysis. A formidable challenge is the precise determination of active orbitals/sites. Herein, 2D Bi3O4Br nanosheets are adopted as an operable platform for heteroatom doping of various transition metals (Fe, Ni, Zn/Cd). As the atom number of dopants increases, the capability of selective CO2 photoconversion is continuously amplified. The intrinsic nature is the variation of active functional orbital as indicated from band center distance (Δd/p-p) indicators. The calculated charge transfer of various CO2-bound geometries further demonstrates the p-p orbital interaction overwhelms d-p orbital interaction. X-ray photoelectron spectroscopy and X-ray absorption spectroscopy results verify the charged nature of Bi sites with 6p orbitals not fully filled by electrons. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis and Gibbs free energy change profile suggest the rapid emergence of the critical *COOH intermediate in a thermodynamically preferred pathway.

Abstract Image

Abstract Image

过渡金属掺杂Bi3O4Br光还原平台的功能轨道演化研究
前沿轨道杂化在催化过程的初始吸附和活化过程中起着至关重要的作用。一项艰巨的挑战是准确确定活跃轨道/位置。本文采用二维Bi3O4Br纳米片作为杂原子掺杂各种过渡金属(Fe, Ni, Zn/Cd)的可操作平台。随着掺杂剂原子数的增加,选择性CO2光转换能力不断增强。其本质是由能带中心距离(Δd/p-p)指标显示的活性功能轨道的变化。计算出的各种co2束缚几何的电荷转移进一步证明了p-p轨道相互作用压倒了d-p轨道相互作用。x射线光电子能谱和x射线吸收能谱结果验证了6p轨道未被电子完全填充的Bi位的带电性质。原位漫反射红外傅立叶变换光谱(DRIFTS)分析和吉布斯自由能变化曲线表明,临界*COOH中间体在热力学优先途径中迅速出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信